C O M M U N I C A T I O N S
Scheme 1
ments, such as occurs in CcO (vide supra) and also in the copper
binding portion of the amyloid beta (Aâ) peptide involved in
Alzheimer’s Disease.31
Acknowledgment. We gratefully acknowledge financial support
of this work (Grants NIH GM28962, K.D.K.; NIH Postdoctoral
Fellowship, R.A.H.; NIH NS27583, N.J.B.).
Supporting Information Available: Synthetic and computational
details, spectroscopic methods and data, and EXAFS fitting methods
are included. This material is available free of charge via the Internet
References
The complexes’ properties were probed via reactivity with small
(1) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV. 2004, 104,
1013-1045.
molecules (O2, CO) and electrochemistry (CV). All three complexes
are unreactive toward O2 as solids or in solution below 0 °C (with
only very slow oxidation occurring at room temperature). This
behavior is analogous to that observed for linear 2-coordinate CuI
complexes studied by Sorrell, Karlin, and others.6-8 The HisHis
[LCuI]+ complexes bind CO (as an O2-surrogate) weakly, with high-
frequency stretching vibrations (νCO ) 2110-2105 cm-1) of low
intensity.8,25 The complexes display irreversible redox behavior, to
be expected for two-coordinate copper, and a high Epa value ([Lδ-
CuI]+ in DMF: 325 mV vs Fc+/Fc) is consistent with resistance to
oxidation.
Three-coordinate derivatives, formed by the addition of N-
methylimidazole (MeIm) to the parent CuI-HisHis complexes,
exhibit starkly contrasting behavior (Scheme 1). [LδCuI(MeIm)]+
(4), characterized by C,H,N analysis and 1H NMR spectroscopy,11
for example, oxidizes rapidly with added O2.26 The complex binds
CO in CH2Cl2 solution with more pronounced backbonding (and
thus lowered νCO ) 2075 cm-1) and higher intensity compared to
2-coordinate [LδCuI]+. Complex 4 exhibits reVersible redox
behavior, E1/2 = -275 mV vs Fc+/Fc (DMF solvent).
(2) Hatcher, L. Q.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9, 669-683.
(3) Abbreviations: PHM ) peptidylglycine R-hydroxylating monooxygenase;
DâH ) dopamine â-hydroxylase; CcO ) cytochrome c oxidase.
(4) Kim, E.; Chufan, E. E.; Kamaraj, K.; Karlin, K. D. Chem. ReV. 2004,
104, 1077-1133.
(5) Blackburn, N. J.; Rhames, F. C.; Ralle, M.; Jaron, S. J. Biol. Inorg. Chem.
2000, 5, 341-353.
(6) Sanyal, I.; Strange, R. W.; Blackburn, N. J.; Karlin, K. D. J. Am. Chem.
Soc. 1991, 113, 4692-4693.
(7) Sanyal, I.; Karlin, K. D.; Strange, R. W.; Blackburn, N. J. J. Am. Chem.
Soc. 1993, 115, 11259-11270.
(8) Sorrell, T. N.; Jameson, D. L. J Am. Chem. Soc. 1983, 105, 6013-6018.
(9) Tan, G. O.; Hodgson, K. O.; Hedman, B.; Clark, G. R.; Garrity, M. L.;
Sorrell, T. N. Acta Cryst. C 1990, 46, 1773-1775.
(10) Le Clainche, L.; Giorgi, M.; Reinaud, O. Eur. J. Inorg. Chem. 2000, 1931-
1933.
(11) See Supporting Information.
(12) Karlin, S.; Zhu, Z. Y.; Karlin, K. D. Biochemistry 1998, 37, 17726-
17734.
(13) Karlin, K. D.; Zhu, Z. Y.; Karlin, S. J. Biol. Inorg. Chem. 1998, 3, 172-
187.
(14) Karlin, S.; Zhu, Z. Y.; Karlin, K. D. Proc. Natl. Acad. Sci. U.S.A. 1997,
94, 14225-14230.
(15) Prigge, S. T.; Kolhekar, A. S.; Eipper, B. A.; Mains, R. E.; Amzel, L. M.
Science 1997, 278, 1300-1305.
(16) Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science 2004,
304, 864-867.
(17) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Nature 1995, 376, 660-
EXAFS and XANES data obtained for [(Lδ)CuI(MeIm)] confirm
a 3-coordinate structure (Scheme 1); the near-edge absorption is
of characteristically lower intensity compared to the 2-coordinate
parent (Figure 1).21 The complex adopts a distorted T-shaped
geometry, in which the Cu-NHis bonds (presumably) have slightly
lengthened (by 0.02 Å), and MeIm provides a Cu-N scatterer at a
longer distance (2.008 Å) from CuI.
In conclusion, we have synthesized a series of CuI complexes
of HisHis dipeptides showing that linear 2-coordinate NδNδ ligation
is very favorable, but the site is NOT redox active. The geometry
resembles that found by EXAFS for reduced PHM CuH (vide supra).
We have here also demonstrated that addition of a third N-donor
to these complexes activates the Cu ion for redox activity. This
may have significance for a detailed understanding of the function-
ing of the CuH electron-transfer site of PHM. Changes in CuH
coordination are known to occur upon oxidation of the enzyme.5
CuH coordination and CO-binding characteristics are also influenced
if substrate is added (and binds to the CuM site ∼11 Å away),27,28
or when Met314 at this CuM site is mutated.29 Further, enzyme
activity and possibly its mechanism are altered by mutations of
His172 (the third ligand).30
All these factors are relatively poorly understood; our new
peptide models in further studies may shed light on the significance
of the geometry and coordination of the PHM CuH site (e.g, what
subtle tuning of CuI-coordination facilitates electron-transfer chem-
istry). In addition, these results have encouraged us that studies of
CuI-model peptide complexes may yield insights into Cu-redox
properties and CuI-O2 reactivity that have not been forthcoming
with studies of other model systems. Future investigations include
CuI oxidative chemistry in these unique HisHis Cu-binding environ-
669.
(18) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi,
H.; Shinzawaitoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Science
1995, 269, 1069-1074.
(19) Mulitple scattering definitively reveals the patterns known for NHis metal
coordination.11
(20) (a) Okkersen, H.; Groeneve, Wl.; Reedijk, J. Recl. TraV. Chim. Pays-Bas
1973, 92, 945-953. (b) Lewin, A. H.; Cohen, I. A.; Michl, R. J. J. Inorg.
Nucl. Chem. 1974, 36, 1951-1957. (c) Agnus, Y.; Louis, R.; Weiss, R.
J. Chem. Soc., Chem. Commun. 1980, 867-869. (d) Engelhardt, L. M.;
Pakawatchai, C.; White, A. H.; Healy, P. C. J. Chem. Soc., Dalton Trans.
1985, 117-123. (e) Munakata, M.; Kitagawa, S.; Shimono, H.; Masuda,
H. Inorg. Chim. Acta 1989, 158, 217-220. (f) Habiyakare, A.; Lucken,
E. A. C.; Bernardinelli, G. J. Chem. Soc., Dalton Trans. 1991, 2269-
2273.
(21) Blackburn, N. J.; Strange, R. W.; Reedijk, J.; Volbeda, A.; Farooq, A.;
Karlin, K. D.; Zubieta, J. Inorg. Chem. 1989, 28, 1349-1357.
(22) Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.;
Solomon, E. I. J. Am. Chem. Soc. 1987, 109, 6433-6442.
(23) See Supporting Information for discussion and comparisons to recently
published calculations: Raffa, D. F.; Rickard, G. A.; Rauk, A. J. Biol.
Inorg. Chem. 2007, 12, 147-164.
(24) Geary, W. J. Coord. Chem. ReV. 1971, 7, 81-122.
(25) (a) Voo, J. K.; Lam, K. C.; Rheingold, A. L.; Riordan, C. G. J. Chem.
Soc., Dalton Trans. 2001, 1803-1805. (b) Casella, L.; Gullotti, M.;
Pallanza, G.; Rigoni, L. J. Am. Chem. Soc. 1988, 110, 4221-4227. (c)
Pasquali, M.; Floriani, C.; Gaetanimanfredotti, A. Inorg. Chem. 1980, 19,
1191-1197. (d) Cole, A. P.; Mahadevan, V.; Mirica, L. M.; Ottenwaelder,
X.; Stack, T. D. P. Inorg. Chem. 2005, 44, 7345-7364. (e) Chou, C. C.;
Su, C. C.; Yeh, A. Inorg. Chem. 2005, 44, 6122-6128.
(26) In fact, we have observed Cu-O2 adducts at low (-80°C) temperature in
solution, to be reported elsewhere.
(27) Jaron, S.; Blackburn, N. J. Biochemistry 2001, 40, 6867-6875.
(28) Jaron, S.; Mains, R. E.; Eipper, B. A.; Blackburn, N. J. Biochemistry 2002,
41, 13274-13282.
(29) Siebert, X.; Eipper, B. A.; Mains, R. E.; Prigge, S. T.; Blackburn, N. J.;
Amzel, L. M. Biophys. J. 2005, 89, 3312-3319.
(30) Evans, J. P.; Blackburn, N. J.; Klinman, J. P. Biochemistry 2006, 45,
15419-15429.
(31) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Chem. ReV. 2006,
106, 1995-2044.
JA0708013
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5353