Paper
Journal of Materials Chemistry C
solution-processed OLEDs based on these complexes could 12 Z. Hao, K. Zhang, K. Chen, P. Wang, Z. Lu, W. Zhu and
show high EL efficiencies. Particularly, the orange-red emitting
Y. Liu, Dalton Trans., 2020, 49, 8722–8733.
device based on QuPODPt displayed the highest EQE, CE and 13 J.-L. Liao, P. Rajakannu, P. Gnanasekaran, S.-R. Tsai,
ꢁ1
ꢁ1
PE of 11.2%, 21.3 cd A , and 11.7 lm W , respectively, which
is among the most efficient OLEDs based on dinuclear Pt(II)
C.-H. Lin, S.-H. Liu, C.-H. Chang, G.-H. Lee, P.-T. Chou,
Z.-N. Chen and Y. Chi, Adv. Opt. Mater., 2018, 6, 1800083.
complexes. This work demonstrates that triphenylphosphine 14 X. Yang, X. Chen, J. Dang, Y. Sun, Z. Feng, Z. Tian, G. Zhou
oxide is a promising scaffold for developing highly efficient
dinuclear Pt(II) complexes.
and Z. Wu, Chem. Eng. J., 2020, 391, 123505.
15 Y. Wei, J. Zhang, W. Kan and H. Xu, Adv. Opt. Mater., 2020,
8, 2001105.
1
6 X. Wu, D.-G. Chen, D. Liu, S.-H. Liu, S.-W. Shen, C.-I. Wu,
G. Xie, J. Zhou, Z.-X. Huang, C.-Y. Huang, S.-J. Su, W. Zhu
and P.-T. Chou, J. Am. Chem. Soc., 2020, 142, 7469–7479.
7 J. Zhang, L. Wang, A. Zhong, G. Huang, F. Wu, D. Li, M. Teng,
J. Wang and D. Han, Dyes Pigm., 2019, 162, 590–598.
Conflicts of interest
There are no conflicts to declare.
1
Acknowledgements
18 A. Tronnier and T. Strassner, Dalton Trans., 2013, 42, 9847–9851.
1
2
2
2
9 L. J. Deng, T. Zhang, R. J. Wang and J. Y. Li, J. Mater. Chem.,
This work was supported by the National Natural Science
Foundation of China (51803163, 21875179, 21602170, and
2012, 22, 15910–15918.
0 H.-T. Mao, C.-X. Zang, G.-G. Shan, H.-Z. Sun, W.-F. Xie and
Z.-M. Su, Inorg. Chem., 2017, 56, 9979–9987.
1 K. Zhang, Y. Liu, Z. Hao, G. Lei, S. Cui, W. Zhu and Y. Liu,
Org. Electron., 2020, 87, 105902.
2 J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba,
R. Bau and M. E. Thompson, Inorg. Chem., 2002, 41,
21572176), the Natural Science Foundation of Shaanxi Province
(2019JZ-29 and 2019JQ-188), the China Postdoctoral Science
Foundation (2016M600778 and 2020M673369), and the Key
Laboratory Construction Program of Xi’an Municipal Bureau
of Science and Technology (201805056ZD7CG40). The charac-
terization assistance from the Instrument Analysis Center of
Xi’an Jiaotong University was also acknowledged.
3055–3066.
2
2
3 G. Zhou, Q. Wang, X. Wang, C.-L. Ho, W.-Y. Wong, D. Ma,
L. Wang and Z. Lin, J. Mater. Chem., 2010, 20, 7472–7484.
4 S. Culham, P.-H. Lano ¨e , V. L. Whittle, M. C. Durrant,
J. A. G. Williams and V. N. Kozhevnikov, Inorg. Chem.,
2013, 52, 10992–11003.
References
1
W.-J. Joo, J. Kyoung, M. Esfandyarpour, S.-H. Lee, H. Koo,
S. Song, Y.-N. Kwon, S. H. Song, J. C. Bae, A. Jo, M.-J. Kwon, 25 M. Velusamy, C.-H. Chen, Y. S. Wen, J. T. Lin, C.-C. Lin, C.-H.
S. H. Han, S.-H. Kim, S. Hwang and M. L. Brongersma,
Science, 2020, 370, 459–463.
Y. Yin, M. U. Ali, W. Xie, H. Yang and H. Meng, Mater. Chem.
Front., 2019, 3, 970–1031.
Lai and P.-T. Chou, Organometallics, 2010, 29, 3912–3921.
26 S. Zhu, J. Hu, S. Zhai, Y. Wang, Z. Xu, R. Liu and H. Zhu,
Inorg. Chem. Front., 2020, 7, 4677–4686.
27 K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim and J.-J. Kim,
Adv. Mater., 2014, 26, 3844–3847.
2
3
Q. Wei, N. Fei, A. Islam, T. Lei, L. Hong, R. Peng, X. Fan,
L. Chen, P. Gao and Z. Ge, Adv. Opt. Mater., 2018, 28 L.-Y. Hsu, D.-G. Chen, S.-H. Liu, T.-Y. Chiu, C.-H. Chang,
6
, 1800512.
P. Tao, Y. Miao, H. Wang, B. Xu and Q. Zhao, Chem. Rec.,
019, 19, 1531–1561.
A. K. Y. Jen, P.-T. Chou and Y. Chi, ACS Appl. Mater.
Interfaces, 2020, 12, 1084–1093.
4
5
6
7
8
9
2
29 A. Liang, Z. Liu, D. Liu, P. Cai, Z. Wang, W. Zhou, S. Hu,
J. Tang, X. Zhang and M. Cai, Opt. Mater., 2019, 88, 551–557.
30 Z. M. Hudson, C. Sun, M. G. Helander, H. Amarne, Z.-H. Lu
and S. Wang, Adv. Funct. Mater., 2010, 20, 3426–3439.
31 R. Kumaresan, A. Maheshwaran, H.-Y. Park, K. Sung,
J. Choi, W. Cho, M. Song, S. I. Ahn and S.-H. Jin, J. Mater.
Chem. C, 2020, 8, 12959–12967.
J. Kalinowski, V. Fattori, M. Cocchi and J. A. G. Williams,
Coord. Chem. Rev., 2011, 255, 2401–2425.
H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and
T. Fischer, Coord. Chem. Rev., 2011, 255, 2622–2652.
M. Chaaban, C. Zhou, H. Lin, B. Chyi and B. Ma, J. Mater.
Chem. C, 2019, 7, 5910–5924.
B.-H. Xia, C.-M. Che, D. L. Phillips, K.-H. Leung and K.- 32 Z. Jiang, J. Wang, T. Gao, J. Ma, Z. Liu and R. Chen, ACS
K. Cheung, Inorg. Chem., 2002, 41, 3866–3875. Appl. Mater. Interfaces, 2020, 12, 9520–9527.
X.-S. Xiao, W. Lu and C.-M. Che, Chem. Sci., 2014, 5, 33 R. Xiao, Y. Xiang, X. Cao, N. Li, T. Huang, C. Zhou, Y. Zou,
482–2488. G. Xie and C. Yang, J. Mater. Chem. C, 2020, 8, 5580–5586.
0 X. Yang, B. Jiao, J.-S. Dang, Y. Sun, Y. Wu, G. Zhou and W.- 34 C. Adachi, M. A. Baldo and S. R. Forrest, J. Appl. Phys., 2000,
Y. Wong, ACS Appl. Mater. Interfaces, 2018, 10, 10227–10235. 87, 8049–8055.
1 M. Z. Shafikov, R. Daniels, P. Pander, F. B. Dias, 35 W. Xiong, F. Meng, C. You, P. Wang, J. Yu, X. Wu, Y. Pei,
2
1
1
J. A. G. Williams and V. N. Kozhevnikov, ACS Appl. Mater.
Interfaces, 2019, 11, 8182–8193.
W. Zhu, Y. Wang and S. Su, J. Mater. Chem. C, 2019, 7,
630–638.
5378
|
J. Mater. Chem. C, 2021, 9, 5373–5378
This journal is © The Royal Society of Chemistry 2021