E
Z.-q. Lin et al.
Letter
Synlett
(5) (a) Pongprom, N.; Bachitsch, H.; Bauchinger, A.; Ettefagh, H.;
Haider, T.; Hofer, M.; Knafl, H.; Slanz, R.; Waismeyer, M.;
Wieser, F.; Spreitzer, H. Monatsh. Chem. 2010, 141, 53.
(b) Deblander, J.; Van Aeken, S.; Jacobs, J.; De Kimpe, N.; Tehrani,
K. A. Eur. J. Org. Chem. 2009, 4882. (c) Claessens, S.; Jacobs, J.;
Van Aeken, S.; Tehrani, K. A.; De Kimpe, N. J. Org. Chem. 2008, 73,
7555. (d) Matiychuk, V. S.; Martyack, R. L.; Obushak, N. D.;
Ostapiuk, Y. V.; Pidlypnyi, N. I. Chem. Heterocycl. Compd. 2004,
40, 1218. (e) Frincke, J. M.; Faulkner, D. J. J. Am. Chem. Soc. 1982,
104, 265. (f) Padwa, A.; Chen, Y. Y.; Dent, W.; Nimmesgern, H.
J. Org. Chem. 1985, 50, 4006. (g) Parker, K. A.; Cohen, I. D.;
Padwa, A.; Dent, W. Tetrahedron Lett. 1984, 25, 4917. (h) Boven,
E.; Erkelens, C. A. M. E.; Luning, M.; Pinedo, H. M. Br. J. Cancer
1990, 61, 709.
(12) (a) Cai, Q.; Li, D. K.; Zhou, R. R.; Shu, W. M.; Wu, Y. D.; Wu, A. X.
Org. Lett. 2016, 18, 1342. (b) Gao, P.; Wang, J.; Bai, Z. J.; Shen, L.
I.; Yan, Y. Y.; Yang, D. S.; Fan, M. J.; Guan, Z. H. Org. Lett. 2016, 18,
6074. (c) Galenko, E. E.; Galenk, A. V.; Khlebnikov, A. F.; Novikov,
M. S. RSC Adv. 2015, 5, 18172. (d) Huang, H. M.; Huang, F.; Li, Y.
J.; Jia, J. H.; Ye, Q.; Han, L.; Gao, J. R. RSC Adv. 2014, 4, 27250.
(e) Saito, A.; Konishi, O.; Hanzawa, Y. Org. Lett. 2010, 12, 372.
(f) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002.
(g) Ackermann, L.; Sandmann, R.; Kaspar, L. T. Org. Lett. 2009,
11, 2031. (h) Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10,
2629.
(13) (a) Li, T. F.; Yan, H.; Li, X. C.; Wang, C. X.; Wan, B. S. J. Org. Chem.
2016, 81, 12031. (b) Xiong, M. J.; Yu, S. S.; Xie, X.; Li, S.; Liu, Y. H.
Organometallics 2015, 34, 5597. (c) Boudriga, S.; Askri, M.;
Rammah, M.; Monnier-Jobé, K. J. Chem. Res. 2003, 208.
(14) (a) Zhou, N. N.; Li, Z. L.; Xie, Z. X. Org. Chem. Front. 2015, 2, 1521.
(b) Zhou, N. N.; Xie, T.; Liu, L.; Xie, Z. X. J. Org. Chem. 2014, 79,
6061.
(15) (a) Huang, H. H.; Gao, J. R.; Hou, L. F.; Jia, J. H.; Han, L.; Ye, Q.; Li,
Y. J. Tetrahedron 2013, 69, 9033. (b) Li, Y. J.; Huang, H. H.; Ju, J.;
Jia, J. H.; Han, L.; Ye, Q.; Yu, W. B.; Gao, J. R. RSC Adv. 2013, 3,
25840. (c) Li, Y. J.; Huang, H. M.; Dong, H. Q.; Jia, J. H.; Han, L.; Ye,
Q.; Gao, J. R. J. Org. Chem. 2013, 78, 9424.
(16) Huang, H. M.; Gao, J. R.; Ye, Q.; Yu, W. B.; Sheng, W. J.; Li, Y. J. RSC
Adv. 2014, 4, 15526.
(17) Galenko, V. V.; Khlebnikov, A. F.; Novikov, M. S.; Avdontceva, M.
S. Tetrahedron 2015, 71, 1940.
(6) (a) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Commun.
2013, 49, 591. (b) Kaupp, G.; Schmeyers, J.; Kuse, A.; Atfeh, A.
Angew. Chem. Int. Ed. 1999, 38, 2896.
(7) (a) Madabhushi, S.; Vangipuram, V. S.; ReddyMallu, K. K.;
Chinthala, N.; Beeram, C. R. Adv. Synth. Catal. 2012, 354, 1413.
(b) Schmidt, E. Y.; Mikhaleva, A. I.; Vasil’tsov, A. M.; Zaitsev, A.
B.; Zorina, N. V. ARKIVOC 2005, (vii), 11. (c) Zaitsev, A. B.;
Schmidt, E. Y.; Mikhaleva, A. M.; Afonin, A. V.; Ushakov, I. A.
Chem. Heterocycl. Compd. 2005, 41, 722. (d) Vasil’tsov, A. M.;
Zaitsev, A. B.; Schmidt, E. Y.; Mikhaleva, A. I.; Afonin, A. V. Men-
deleev Commun. 2001, 11, 74. (e) Petrova, O. V.; Mikhaleva, A. I.;
Sobenina, L. N.; Schmidt, E. Y.; Kositsyna, E. I. Mendeleev
Commun. 1997, 7, 162.
(8) (a) Zelina, E. Y.; Nevolina, T. A.; Sorotskaja, L. N.; Skvortsov, D.
A.; Trushkov, I. V.; Uchuskin, M. G. J. Org. Chem. 2018, 83, 11747.
(b) Han, S. Z.; Zard, S. Z. Org. Lett. 2014, 16, 1992. (c) Li, P.; Zhao,
J. J.; Xia, C. G.; Li, F. W. Org. Lett. 2014, 16, 5992. (d) Ramírez-
Rodríguez, A.; Méndez, J. M.; Jiménez, C. C.; León, F.; Vazquez, A.
Synthesis 2012, 44, 3321. (e) Wang, H. Y.; Mueller, D. S.;
Sachwani, R. M.; Kapadia, R.; Londino, H. N.; Anderson, L. L.
J. Org. Chem. 2011, 76, 3203. (f) Aginagalde, M.; Bello, T.;
Masdeu, C.; Vara, Y.; Arrieta, A.; Cossío, F. P. J. Org. Chem. 2010,
75, 7435. (g) Chen, J. X.; Wu, H. Y.; Zheng, Z. G.; Jin, C.; Zhang, X.
X.; Sua, W. K. Tetrahedron Lett. 2006, 47, 383.
(9) (a) Liu, Y.; Hu, H. Y.; Wang, X.; Zhi, S. J.; Kan, Y. H.; Wang, C.
J. Org. Chem. 2017, 82, 4194. (b) Wu, X.; Geng, X.; Zhao, P. G.;
Zhang, J. J.; Wu, Y. D.; Wu, A. X. Chem. Commun. 2017, 53, 3438.
(c) Huang, H. M.; Li, Y. J.; Gao, J. R. J. Org. Chem. 2014, 79, 1084.
(d) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
1996, 61, 346. (e) Huisgen, R. Angew. Chem. 1963, 75, 604.
(10) (a) Kotha, S.; Todeti, S.; Das, T.; Datta, A. Tetrahedron Lett. 2018,
59, 1023. (b) Hosseini-Sarvari, M.; Najafvand-Derikvandi, S.;
Jarrahpour, A.; Heiran, R. Chem. Hetrocycl. Comp. 2014, 49, 1732.
(c) Aydogan, F.; Yolacan, C. J. Chem. 2013, 976724. (d) Fang, Y.;
Leysen, D.; Ottenheijm, H. C. J. Synth. Commun. 1995, 25, 1857.
(e) Clauson-Kaas, N.; Tyle, Z. Acta Chem. Scand. 1952, 6, 667.
(11) (a) Kirill, I. M.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.;
Ivanov, A. Y.; Starova, G. L.; Khlebnikov, A. F. J. Org. Chem. 2018,
83, 3177. (b) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.;
Sharma, P. RSC Adv. 2015, 5, 15233. (c) Zhu, L.; Yu, Y.; Mao, Z.;
Huang, X. L. Org. Lett. 2015, 17, 30. (d) Chen, G. Q.; Zhang, X. N.;
Wei, Y.; Tang, X. Y.; Shi, M. Angew. Chem. Int. Ed. 2014, 53, 8492.
(e) Bauer, I.; Knolker, H. Top. Curr. Chem. 2012, 309, 203.
(f) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem. Int. Ed. 2012,
51, 862.
(18) All chemicals were purchased from commercial vendors and
were used as received without further purification. The 1H and
13C NMR spectra were recorded at 500 and 125 MHz, respec-
tively, in CDCl3 using TMS as internal standard with a Bruker
AM 500 spectrometer. Chemical shifts () are reported as parts
per million (ppm) and the following abbreviations are used to
identify the multiplicities: s=singlet, d=doublet, t=triplet,
q=quartet, m=multiplet, b=broad and all combinations thereof
can be explained by their integral parts. HRMS data were
obtained with a Thermo Scientific LTQ Orbitrap XL mass spec-
trometer and the GC-MS were recorded with an Agilent
(GC431-MS210). Thin-layer chromatography was performed on
pre-coated glass-backed plates and visualized with UV light at
254 nm. Flash column chromatography was performed on silica
gel (see the Supporting Information).
Synthesis of 3a; Typical Procedure
A mixture of chalcone 1a (0.25 mmol, 0.0520 g), diethyl imino-
diacetate 2a (0.5 mmol, 0.0945 g), Et3N (0.25 mmol, 0.0253 g),
and Cu(OAc)2 (0.25 mmol, 0.0498 g) was dissolved in DMF (1.0
mL) in a thick-walled tube (10 mL). The mixture was stirred at
100 °C for 8 h under air atmosphere, and the progress of the
reaction was monitored by TLC (PE/EtOAc = 2:1 (v/v)). Upon
completion, the mixture was cooled to r.t. and poured into satu-
rated aqueous NaCl (10.0 mL) and extracted with EtOAc
(3 × 10.0 mL). The acquired organic phases were combined and
dried over anhydrous Na2SO4. After removing the volatile sol-
vent, the product 3a was obtained as a white solid in 90% yield
by isolation with silica column chromatography (eluting sol-
vent: petroleum ether/EtOAc = 2:1 (v/v)).
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E