Letters
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4 911
References
(1) (a) Aonuma, S.; Koama, Y.; Akai, K.; Komiyama, Y.; Nakajima, S.;
Wakabayashi, M.; Makino, T. Studies on heart. XIX. Isolation of an
atrial peptide that improves the rhythmicity of cultured myocardial
cell clusters. Chem. Pharm. Bull. 1980, 28, 3332–3339. (b) Aonuma,
S.; Koama, Y.; Akai, K.; Iwasaki, S. Studies on heart. XX. Further
effects on bovine ventricle protein (BVP) and antiarrhythmic peptide
(AAP) on myocardial cells in culture. Chem. Pharm. Bull. 1980, 28,
3340–3346.
(2) (a) Dikshit, M.; Srivastava, R.; Kundu, B.; Mathur, K. B.; Kar, K.
Antiarrhythmic and antithrombotic effect of antiarrhythmic peptide
and its synthetic analogs. Indian J. Exp. Biol. 1988, 26, 874–876. (b)
Kohama, Y.; Okimoto, N.; Mimura, T.; Fukaya, C.; Watanabe, M.;
Yokoyama, K. A new antiarrhythmic peptide, N-3-(4-hydroxyphenyl)
propionyl Pro-Hyp-Gly-Ala-Gly. Chem. Pharm. Bull. 1987, 35, 3928–
3930.
(3) Argentieri, T.; Cantor, E.; Wiggins, J. R. Antiarrhythmic peptide has
no direct cardiac actions. Experientia 1989, 45, 737–738.
(4) Dhein, S.; Manicone, N.; Muller, A.; Gerwin, R.; Ziskoven, U.;
Irankhahi, A.; Minke, C.; Klaus, W. A new synthetic antiarrhythmic
peptide reduces dispersion of epicardial activation recovery interval
and diminishes alterations of epicardial activation patterns induced
by regional ischemia. A mapping study. Naunyn-Schmiedeberg’s Arch.
Pharmacol. 1994, 350, 174–184.
(5) (a) Mu¨ller, A.; Schaefer, T.; Linke, W.; Tudyka, T.; Gottwald, M.;
Klaus, W.; Dhein, S. Actions of the antiarrhythmic peptide AAP10
on intercellular coupling. Naunyn-Schmiedeberg’s Arch. Pharmacol.
1997, 356, 76–82. (b) Mu¨ller, A.; Gottwald, M.; Tudyka, T.; Linke,
W.; Klaus, W.; Dhein, S. Increase in gap junction conductance by an
antiarrhythmic peptide. Eur. J. Pharmacol. 1997, 327, 65–72.
(6) Haugan, K.; Petersen, J. S. Gap junction-modifying antiarrhythmic
peptides: therapeutic potential in atrial fibrillation. Drugs Future 2007,
32, 245–260.
1
Figure 7. Pharmacophore overlay of 9f (magenta) with the H NMR
derived putative bioactive conformer of 3 (green). Atoms used in
MULTIFIT alignment are numbered: (1) centroids of benzoyl moiety
of 9f and N-tyrosinephenyl group of 3; (2, 3) the glycine portion of 9f
with the C-terminal carboxamide of 3.
(7) Kjølbye, A. L.; Haugan, K.; Hennan, J. K.; Petersen, J. S. Pharma-
cological modulation of gap junction function with the novel compound
rotigaptide: a promising new principle for prevention of arrhythmias.
Basic Clin. Pharmacol. Toxicol. 2007, 101, 215–230.
(8) Lynch, J. J.; Rahwan, R. G.; Witiak, D. T. Effects of 2-substituted
3-dimethylamino-5,6-methylenedioxyindenes on calcium-induced ar-
rhythmias. J. CardioVasc. Pharmacol. 1981, 3, 49–60.
(9) Grover, R.; Dhein, S. Spatial structure determination of antiarrhythmic
peptide using nuclear magnetic resonance spectroscopy. Peptides 1998,
19, 1725–1729.
(10) Kjølbye, A. L.; Knudsen, C. B.; Jepsen, T.; Larsen, B. D.; Petersen,
J. S. Pharmacological characterization of the new stable antiarrhythmic
peptide analog Ac-D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123):
in vivo and in vitro studies. J. Pharmacol. Exp. Ther. 2003, 306, 1191–
1199.
(11) Haugan, K.; Olsen, K. B.; Hartvig, L.; Petersen, J. S.; Holstein-Rathlou,
N. H.; Hennan, J. K.; Nielsen, M. S. The antiarrhythmic peptide analog
ZP123 prevents atrial conduction slowing during metabolic stress.
J. CardioVasc. Electrophysiol. 2005, 16, 537–545.
(12) Laurent, G.; Leong-Poi, E.; Mangat, I.; Moe, G.; Hu, X.; So, P.P.-S.;
Tarulli, E.; Ramadeen, A.; Rossman, E. I.; Hennan, J. K.; Dorian, P.
Effects of chronic gap junction conduction-enhancing antiarrhythmic
peptide GAP-134 administration on experimental atrial fibrillation in
dogs. Circulation, in press.
(13) Larsen, B. D.; Petersen, J. S.; Haugan, K. J.; Butera, J. A.; Hennan,
J. K.; Kerns, E. H.; Piatnitski, E. L. Preparation of Peptidomimetics,
Especially Modified Lysine-Mimetic Compounds, as Antiarrhythmic
Agents. U.S. Pat. Appl. 0149460-A1, 2007.
(14) Clarke, T. C.; Thomas, D.; Petersen, J. S.; Evans, W.; Martin, H.;
Patricia, E. M. The antiarrhythmic peptide rotigaptide (ZP123)
increases gap junction intercellular communication in cardiac myocytes
and HeLa cells expressing connexin 43. Br. J. Pharmacol. 2006, 147,
486–495.
(15) SYBYL, version 6.7; Tripos Associates: St. Louis, MO, 2000.
(16) MacroModel; Schrodinger, LLC: Portland, OR.
(17) Nilges, M.; Kuszewski, J.; Brunger, A. T. Computational Aspects of
the Study of Biological Macromolecules by NMR; Hoch, J. C., Ed.;
Plenum Press: New York, 1991.
Figure 8. Mouse CaCl2 data for 9f and hexapeptide 3 after oral
administration.
The bell shape dose response observed in this model has been
observed previously with other antiarrhythmic compounds includ-
ing verapamil and amiodarone and is likely model specific.10
In summary, we have reported our efforts to identify the first
orally bioavailable small molecule gap-junction modifier. Screening
of a focused subset of the Zealand Pharma small peptide library
resulted in the identification and characterization of three small
molecule chemotypes that displayed the same potency and efficacy
as parent hexapeptide 3. After demonstrating oral bioavailability
in dog (21%), 9f ((2S,4R)-1-(2-aminoacetyl)-4-benzamidopyrroli-
dine-2-carboxylic acid hydrochloride, GAP-134) was selected for
additional studies and was shown to re-establish GJIC, prevent
conduction velocity slowing in metabolically stressed atrial tissue,
and reduce dye uptake and cell swelling in C6 glioma cells. The
compound significantly prolonged the time to AV block in the
mouse CaCl2 arrhythmia model after oral administration. Com-
pound 9f was found to have a highly desirable in vitro and in vivo
safety profile including (1) lack of direct effects on membrane ion
currents, hERG inhibition, and CYP450 liabilities, (2) negative
AMES result, (3) a benign NovaScreen profile, and (4) no effects
on systemic hemodynamics.20 On the basis of these and other data
to be reported in due course, 9f was selected as a development
compound and is currently in phase 1 clinical trials for the treatment
of AF.
(18) Kuszewski, J.; Nilges, M.; Brunger, A. T. Sampling and efficiency of
metric matrix distance geometry: a novel partial metrization algorithm.
J. Biomol. NMR 1992, 2, 33–56.
(19) InsightII, version 2000.0; Accelrys, Inc.: San Diego, CA.
(20) Rossman, E. I.; Liu, K.; Morgan, G. A.; Swillo, R. E.; Butera, J. A.;
Gruver, M.; Kantrowitz, J.; Feldman, H. S.; Haugan, K.; Petersen,
J. S.; Hennan, J. K. Effects of the gap junction modifier, GAP-134,
on conduction and atrial fibrillation/flutter inducibility and maintenance
in dogs. Circulation 2007, 116 (16, Suppl. S), 392.
Supporting Information Available: Procedures for the synthesis
and characterization of 9f, details of the in vitro and in vivo
1
biological protocols, and details of the H NMR and 13C NMR
conformational analysis and modeling. This material is available
JM801558D