Communication
ChemComm
pseudo[1,2]rotaxanes or pseudo[1,1]rotaxanes are observed in a Conflicts of interest
3
mixture of 1 equiv. Ph14CMe with 2 equiv. or 1 equiv. CB[8],
respectively (Fig. S13, ESI†). However, a pseudo[2,3]rotaxane
There are no conflicts to declare.
was successfully fabricated when using Ph14CMe as the long-
2
axis molecule, exhibiting two types of CB[8] signals in Fig. 4d as References
well as a diffusion coefficient similar to those measured for
1
S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio and
O. A. Scherman, Chem. Rev., 2015, 115, 12320–12406.
ꢁ
10
2
ꢁ1
Ant26Me
2
-CB[8]
3
. The D value of 1.84ꢀ 10
m s is smaller
than the typical D value for complexes containing two CB[8]
2 K. I. Assaf and W. M. Nau, Chem. Soc. Rev., 2015, 44, 394–418.
3 M. Freitag, L. Gundlach, P. Piotrowiak and E. Galoppini, J. Am.
Chem. Soc., 2012, 134, 3358–3366.
4
5
6
2
7
macrocycles, suggesting a resultant complex with more than
two CB[8]s. A thermogram (Fig. S15, ESI†) obtained from
isothermal titration calorimetry displays an obvious inflection
H.-J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi
and K. Kim, Angew. Chem., Int. Ed., 2001, 40, 1526–1529.
L. M. Heitmann, A. B. Taylor, P. J. Hart and A. R. Urbach, J. Am.
Chem. Soc., 2006, 128, 12574–12581.
Y. Liu, Y. Yu, J. Gao, Z. Wang and X. Zhang, Angew. Chem., Int. Ed.,
2010, 49, 6576–6579.
point at a Ph14CMe /CB[8] ratio of around 0.67 corresponding
2
to a stoichiometric ratio of 2 : 3. A 2 : 2 complex typically
ꢁ
1 15
exhibits an enthalpy change of only around 80 kJ mol
;
ꢁ1
7 F. Biedermann and O. A. Scherman, J. Phys. Chem. B, 2012, 116,
842–2849.
A. R. Urbach and V. Ramalingam, Isr. J. Chem., 2011, 51, 664–678.
while the large enthalpy change of around 110 kJ mol before
this inflection point suggests that two Ph14CMe long-axis
molecules capture more than two CB[8] macrocycles. It is worth
noting that a single Ph14CMe alone cannot complex three
CB[7] macrocycles even in the presence of excess CB[7]
2
2
8
9 C. Hou, X. Zeng, Y. Gao, S. Qiao, X. Zhang, J. Xu and J. Liu, Isr.
J. Chem., 2018, 58, 286–295.
2
10 E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed and
O. A. Scherman, J. Am. Chem. Soc., 2010, 132, 14251–14260.
(
Fig. S14, ESI†), which indicates that an increase of bulkiness 11 J. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman and
C. Abell, Science, 2012, 335, 690–694.
at the termini not only extends the molecular surface along
the long-axis of the dimer, but more importantly enlarges
1
2 Y. Lan, Y. Wu, A. Karas and O. A. Scherman, Angew. Chem., Int. Ed.,
2014, 53, 2166–2169.
the slippage between the two long-axis molecules to ensure 13 Y. Ahn, Y. Jang, N. Selvapalam, G. Yun and K. Kim, Angew. Chem.,
Int. Ed., 2013, 52, 3140–3144.
4 J. Liu, C. S. Y. Tan and O. A. Scherman, Angew. Chem., Int. Ed., 2018,
adequate central spacing for the third CB[8] macrocycle.
1
In conclusion, a discrete dimer consisting of two long-axis
57, 8854–8858.
molecules with proper central spacing is critical for the 15 G. Wu, M. Olesi n´ ska, Y. Wu, D. Matak-Vinkovic and O. A. Scherman,
J. Am. Chem. Soc., 2017, 139, 3202–3208.
6 B. Yang, S.-B. Yu, H. Wang, D.-W. Zhang and Z.-T. Li, Chem. – Asian J.,
formation of CB[8]-mediated pseudo[2,3]rotaxanes. This work
demonstrates that extended central spacing can be realised
1
2018, 13, 1312–1317.
not only through the incorporation of an elongated core unit 17 M. Olesi n´ ska, G. Wu, S. G o´ mez-Coca, D. Anto o´ n-Garci ´ı a, I. Szab ´o ,
E. Rosta and O. A. Scherman, Chem. Sci., 2019, 10, 8806–8811.
such as a 2,6-anthracenyl or 2,6-naphthyl moiety, but also by
1
8 S. Schoder, H. V. Schr o¨ der, L. Cera, R. Puttreddy, A. G u¨ ttler,
U. Resch-Genger, K. Rissanen and C. A. Schalley, Chem. – Eur. J.,
2019, 25, 3257–3261.
utilising appropriate bulky end groups such as isopropyl
moieties, which serve to push the outer two macrocycles
away from the central core. The resultant pseudo[2,3]-
rotaxanes confine the stacked dimers of chromophores in a
1
2
9 B. Zhang, Y. Dong, J. Li, Y. Yu, C. Li and L. Cao, Chin. J. Chem., 2019,
37, 269–275.
0 K. Kotturi and E. Masson, Chem. – Eur. J., 2018, 24, 8670–8678.
controlled manner leading to unique, emergent photophyscial 21 H. Yin, Q. Cheng, R. Rosas, S. Viel, V. Monnier, L. Charles, D. Siri, D. Gigmes,
O. Ouari and R. Wang, et al., Chem. – Eur. J., 2019, 25, 12552–12559.
2 T. K. Ronson, W. Meng and J. R. Nitschke, J. Am. Chem. Soc., 2017,
properties.
2
This work was supported by the Leverhulme Trust (project:
139, 9698–9707.
‘
‘Natural material innovation for sustainable living’’, G. W.), an 23 D. Bongard, M. M o¨ ller, S. N. Rao, D. Corr and L. Walder, Helv. Chim.
Acta, 2005, 88, 3200–3209.
EPSRC Programme Grant (NOtCH, EP/L027151/1, E. R., O. A. S.),
and an ERC-2016 Consolidator Grant (CAM-RIG, 726470, O. A. S.),
2
4 E. Darve, D. Rodrguez-G o´ mez and A. Pohorille, J. Chem. Phys., 2008,
28, 144120.
1
EPSRC (EP/R013012/1, EP/N020669/1), BBSRC (BB/N007700/1), 25 J. Henin, G. Fiorin, C. Chipot and M. L. Klein, J. Chem. Theory
Comput., 2009, 6, 35–47.
and an ERC Starting Grant (BioNet, 757850, I. S., E. R.). The
authors thank Dr Magdalena Olesi n´ ska for offering 1,4-naphthyl
precursors for Zincke reactions.
2
2
6 W. L. Mock and N. Y. Shih, J. Org. Chem., 1986, 51, 4440–4446.
7 G. Wu, D. E. Clarke, C. Wu and O. A. Scherman, Org. Biomol. Chem.,
2019, 17, 3514–3520.
1
3230 | Chem. Commun., 2019, 55, 13227--13230
This journal is ©The Royal Society of Chemistry 2019