organic compounds
Re®nement
The oxazoline ring is nearly planar with an r.m.s. deviation
Ê
different interplanar angles of 8.82 (10) and 82.47 (4)ꢀ,
respectively, to the oxazoline ring. The C2ÐC6 distance of
Re®nement on F2
R[F2 > 2ꢂ(F2)] = 0.029
wR(F2) = 0.082
S = 1.076
2406 re¯ections
233 parameters
All H-atom parameters re®ned
w = 1/[ꢂ2(Fo2) + (0.0536P)2
+ 0.0663P]
(Á/ꢂ)max < 0.001
of 0.0306 A. The C2 and C5 phenyl groups subtend very
3
Ê
Áꢆmax = 0.13 e A
3
Ê
0.13 e A
Áꢆmin
=
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coef®cient: 0.0047 (7)
Absolute structure: Flack (1983)
Flack parameter = 0.09 (19)
Ê
Ê
1.4723 (17) A is shorter than the C5ÐC14 single bond of
1.4999 (16) A by about 12ꢂ. This indicates a weak conjugation
effect between the C2 phenyl group and the oxazoline ring.
The bond distances and angles in the title molecule are
consistent with those found in (4S,5S,SS)-4-hydroxymethyl-2-
[2-(4-methylphenylsul®nyl)phenyl]-4,5-dihydro-5-phenyl-1,3-
oxazole (Bower et al., 1996). Other hydroxymethyl-phenyl-
oxazoline derivatives are not described in the Cambridge
Structural Database (Version 5.18; Allen & Kennard, 1993).
The O13 atom of the hydroxyl group is synclinal with
respect to the N3ÐC4 bond of the oxazoline ring [torsion
angle O13ÐC12ÐC4ÐN3 of 68.15 (14)ꢀ]. We assume that this
arrangement of the O13 atom is stabilized by the inter-
molecular O13ÐH13AÁ Á ÁN3i hydrogen bond (Table 2), which
leads to chains of molecules parallel to the x axis. An inter-
molecular C16ÐH16AÁ Á ÁO13ii contact (Table 2) links neigh-
2
2
where P = (Fo + 2Fc )/3
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
O1ÐC2
O1ÐC5
C2ÐN3
C2ÐC6
1.3563 (14)
1.4568 (16)
1.2677 (16)
1.4723 (17)
N3ÐC4
C4ÐC5
C5ÐC14
1.4660 (15)
1.5479 (16)
1.4999 (16)
C2ÐO1ÐC5
N3ÐC2ÐO1
C2ÐN3ÐC4
106.52 (9)
117.81 (10)
107.69 (9)
N3ÐC4ÐC5
O1ÐC5ÐC4
104.34 (10)
103.13 (9)
Table 2
Hydrogen-bonding geometry (A, ).
bouring chains into
a two-dimensional hydrogen-bond
ꢀ
Ê
network parallel to the xy plane (Fig. 2).
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
O13ÐH13AÁ Á ÁN3i
0.92 (2)
0.99 (2)
1.89 (2)
2.49 (2)
2.7948 (14)
3.3314 (18)
169 (2)
142.3 (16)
C16ÐH16AÁ Á ÁO13ii
Symmetry codes: (i) x
Experimental
1
2
3
2
1
2
;
y; z; (ii) x; 52 y; z.
The title compound, (II), was prepared according to the literature
procedure of Rozwadowska (1998). The crystals were grown from
ethanol by slow evaporation of the solvent at room temperature.
Some of physical and spectral characteristics of our sample and of the
others are given below:
The positions of the H atoms were obtained from difference
Fourier maps and re®ned freely. The absolute con®guration of (II)
was established on the basis of 930 Friedel opposite re¯ections using
the Flack parameter (Flack, 1983).
(II): m.p. 459±460 K; [ꢁ]D20 = +51.0 (c = 0.54, CHCl3), [ꢁ]2D0 = +70.0
(c = 0.5, CH3OH), [ꢁ]2D0 = +88.5 (c = 1.0, DMSO); IR (KBr) cm
:
1
Data collection, cell re®nement and data reduction: Kuma KM-4
Software (Kuma Diffraction, 1991); program(s) used to solve struc-
ture: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne struc-
ture: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII
(Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 1997); soft-
ware used to prepare material for publication: SHELXL97.
1648 (C N); 1H NMR (CDCl3), p.p.m.: ꢃ = 4.24 (d, J = 8.0 Hz, H4),
5.58 (d, J = 8.2 Hz, H5).
Allen & Williams (1994): m.p. 400±402 K; [ꢁ]D25
CHCl3); IR (KBr) cm 1: 1670 (C N); 1H NMR (CDCl3), p.p.m.: ꢃ =
=
44.6 (c = 5.4,
4.22 (H4), 5.56 (d, J = 8.0 Hz, H5).
Hoarau et al. (1997): m.p. 408 K; [ꢁ]2D0 = +74.2 (c = 1,0, DMSO); 1H
NMR (CDCl3), p.p.m.: ꢃ = 4.23 (d, J = 8.1 Hz, H4), 5.57 (d, J = 8.1 Hz,
H5).
This work was supported by KBN grant No. 3 T09A 027 17.
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: JZ1397). Services for accessing these data are
described at the back of the journal.
Crystal data
C16H15NO2
Mr = 253.29
Orthorhombic, P212121
Ê
a = 4.8995 (10) A
Ê
b = 11.3300 (13) A
c = 23.820 (3) A
Ê
V = 1322.3 (4) A
Z = 4
Dx = 1.272 Mg m
Cu Kꢁ radiation
Cell parameters from 48
re¯ections
ꢄ = 15.4±30.3ꢀ
References
1
ꢅ = 0.674 mm
T = 293 (2) K
Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31±37.
Allen, J. V. & Williams, J. M. J. (1994). Tetrahedron Asymmetry, 5, 277±282.
Bower, J. F., Martin, C. J., Rawson, D. J., Slawin, A. M. Z. & Williams, J. M. J.
(1996). J. Chem. Soc. Perkin Trans. 1, pp. 333±342.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876±881.
Ê
3
Needle, colourless
0.50 Â 0.25 Â 0.11 mm
3
È
Hoarau, O., Aõt-Haddou, H., Castro, M. & Balavoine, G. G. A. (1997). Tetra-
hedron Asymmetry, 8, 3755±3764.
Data collection
Kuma Diffraction KM-4 diffract-
ometer
!±2ꢄ scans
2557 measured re¯ections
2406 independent re¯ections
2273 re¯ections with I > 2ꢂ(I)
Rint = 0.037
ꢄ
max = 70.04ꢀ
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, USA.
Kuma Diffraction (1991). Kuma KM-4 User's Guide. Version 1991t. Kuma
Diffraction, Wrocøaw, Poland.
Rozwadowska, M. D. (1998). Tetrahedron Asymmetry, 9, 1615±1618.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473.
È
Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany.
h = 5 ! 5
k = 0 ! 13
l = 0 ! 29
2 standard re¯ections
every 100 re¯ections
intensity decay: 0.7%
ꢁ
982 Gzella and Rozwadowska C16H15NO2
Acta Cryst. (2000). C56, 981±982