Several approaches have been taken to the synthesis of
multivalent peptides and proteins. The most common ap-
proach is to utilize amino acid side chains during or after
peptide synthesis to create branched structures. This was first
applied by Tam to produce multiple antigen peptides (MAPs)
by initiating the synthesis of dendrimeric peptides on-resin
utilizing both the NR and Nε amino groups of lysine.9 This
approach has been extended by Tam and others to use
cysteine and non-natural amino acids to form disulfide-,10,11
thioether-,5,6,12,13 thiazolidine-,7,14 triazole-,15,16 and oxime-
linked17 multivalent peptides. While these approaches work
well for producing multimeric synthetic peptides, the ap-
plication of these strategies to expressed proteins is com-
plicated by the increased number of amino acid residues in
proteins and the necessity of introducing non-natural chemi-
cal functionalities onto proteins. To address these issues, the
chemoselective reaction expressed protein ligation (EPL) has
been utilized to incorporate synthetic peptides and non-
natural functionalities onto the C-termini of expressed
proteins.18-21 This has allowed the production of C-
terminally linked multimers of expressed proteins.22,23
Because many proteins cannot be conjugated through their
C-termini without affecting biological activity and because
it is also desirable to produce protein heteromultimers, we
have explored other chemoselective strategies for the produc-
tion of protein multimers. Herein we report a novel strategy
for the synthesis of N-terminally linked homo- and hetero-
multimers of expressed proteins using a combination of
NCL24,25 with CuAAC click chemistry.26 This strategy takes
advantage of NCL to selectively modify the N-terminus of
expressed proteins with azide and alkyne moieties and the
bio-orthogonal nature of the CuAAC reaction to produce
homo- and heteromultimers.
the fusion protein with TEV protease produces a protein
containing a N-terminal cysteine.27 Next, azide/alkyne-
containing thioesters are specifically ligated to protein
N-terminal cysteines via NCL (Figure 1). Finally, the
Figure 1. Synthesis of azide/alkyne-functionalized proteins.
N-terminal azide- and alkyne-containing proteins are either
directly coupled together to form dimers or coupled onto
alkyne- and azide-containing linkers to form linker-conju-
gated multimers through CuAAC click chemistry. Using this
strategy, not only can N-terminally linked expressed protein
homodimers and homotrimers be produced, but synthetically
challenging N-terminally linked expressed protein het-
erodimers can also be produced. In addition to protein
multimer formation, expressed proteins that are N-terminally
modified by azide and alkyne moieties by the methods
described here can also be utilized in the myriad of
applications that have been developed for CuAAC click
chemistry, such as protein modification, immobilization, and
protein-polymer conjugation.28-36
In our strategy, the target protein is expressed as a fusion
protein which contains a tobacco etch virus NIa (TEV)
protease cleavable His-tag at the N-terminus. Treatment of
(9) Tam, J. P. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5409
(10) Yang, R.; Yang, J.; Weliky, D. P. Biochemistry 2003, 42, 3527
(11) Yang, R.; Prorok, M.; Castellino, F. J.; Weliky, D. P. J. Am. Chem.
Soc. 2004, 126, 14722
(12) Wang, L. X.; Ni, J.; Singh, S. Bioorg. Med. Chem. 2003, 11, 159
.
.
.
.
(13) Zhou, M.; Bentley, D.; Ghosh, I. J. Am. Chem. Soc. 2004, 126,
734
.
Synthesis of an azide-containing thioester was accom-
plished by coupling azidoacetic acid 1 with tert-butyl
mercaptoacetate 2 to form tert-butyl-protected azidoacetic
(14) Rao, C.; Tam, J. P. J. Am. Chem. Soc. 1994, 116, 6975
.
(15) Franke, R.; Doll, C.; Eichler, J. Tetrahedron Lett. 2005, 46, 4479
.
(16) Galibert, M.; Dumy, P.; Boturyn, D. Angew. Chem., Int. Ed. 2009,
48, 2576
.
(17) Mitchell, J. P.; Roberts, K. D.; Langley, J.; Koentgen, F.; Lambert,
J. N. Bioorg. Med. Chem. Lett. 1999, 9, 2785.
(18) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. U.S.A.
(27) Tolbert, T. J.; Wong, C. H. Angew. Chem., Int. Ed. 2002, 41, 2171.
(28) Gauchet, C.; Labadie, G. R.; Poulter, C. D. J. Am. Chem. Soc. 2006,
1998, 95, 6705
(19) Tolbert, T. J.; Wong, C.-H. J. Am. Chem. Soc. 2000, 122, 5421
(20) Nilsson, B. L.; Hondal, R. J.; Soellner, M. B.; Raines, R. T. J. Am.
Chem. Soc. 2003, 125, 5268
(21) Muir, T. W. Annu. ReV. Biochem. 2003, 72, 249
(22) Ziaco, B.; Pensato, S.; D’Andrea, L. D.; Benedetti, E.; Romanelli,
.
128, 9274.
.
(29) Lin, P. C.; Ueng, S. H.; Tseng, M. C.; Ko, J. L.; Huang, K. T.; Yu,
S. C.; Adak, A. K.; Chen, Y. J.; Lin, C. C. Angew. Chem., Int. Ed. 2006,
.
45, 4286.
.
(30) Humenik, M.; Huang, Y.; Wang, Y.; Sprinzl, M. ChemBioChem
2007, 8, 1103
.
A. Org. Lett. 2008, 10, 1955
.
(31) Moses, J. E.; Moorhouse, A. D. Chem. Soc. ReV. 2007, 36, 1249.
(23) van Baal, I.; Malda, H.; Synowsky, S. A.; van Dongen, J. L.;
(32) van Kasteren, S. I.; Kramer, H. B.; Jensen, H. H.; Campbell, S. J.;
Hackeng, T. M.; Merkx, M.; Meijer, E. W. Angew. Chem., Int. Ed. 2005,
Kirkpatrick, J.; Oldham, N. J.; Anthony, D. C.; Davis, B. G. Nature 2007,
44, 5052
.
446, 1105.
(24) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science
1994, 266, 776
(25) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. U.S.A.
(33) Connor, R. E.; Piatkov, K.; Varshavsky, A.; Tirrell, D. A.
ChemBioChem 2008, 9, 366
(34) Fournier, D.; Du Prez, F. Macromolecules 2008, 41, 4622
(35) Gauthier, M. A.; Klok, H. A. Chem. Commun. 2008, 2591
(36) Merkel, L.; Beckmann, H. S.; Wittmann, V.; Budisa, N. Chem-
BioChem 2008, 9, 1220
.
.
.
1998, 95, 6705
.
.
(26) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596.
.
Org. Lett., Vol. 11, No. 18, 2009
4145