Inorganic Chemistry
Article
Gambino, G.; Fekete, M.; Botta, M. Developing high field MRI
contrast agents by tuning the rotational dynamics: bisaqua
GdAAZTA-based dendrimers. Isr. J. Chem. 2017, 57, 887−895.
(i) Jin, M.; Zhang, Y.; Gao, G.; Xi, Q.; Yang, Y.; Yan, L.; Zhou, H.;
Zhao, Y.; Wu, C.; Wang, L.; Lei, Y.; Yang, W.; Xu, J. MRI Contrast
agents based on conjugated polyelectrolytes and dendritic polymers.
Macromol. Rapid Commun. 2018, 39, 1800258.
(9) Fischer, D.; Li, Y.; Barbara Ahlemeyer, B.; Krieglstein, J.; Kissel,
T. In vitro cytotoxicity testing of polycations: influence of polymer
structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121−
1131.
(10) (a) Verwilst, P.; Park, S.; Yoon, B.; Kim, J. S. Recent advances
in Gd-chelate based bimodal optical/MRI contrast agents. Chem. Soc.
Rev. 2015, 44, 1791−1806. (b) Chilla, S. N. M.; Henoumont, C.;
Vander Elst, L.; Muller, R. N.; Laurent, S. Importance of DOTA
derivatives in bimodal imaging. Isr. J. Chem. 2017, 57, 800−808.
(c) Wu, M.; Shu, J. Multimodal molecular imaging: current status and
future directions. Contrast Media Mol. Imaging 2018, 1.
(11) Barge, A.; Cravotto, G.; Gianolio, E.; Fedeli, F. How to
determine free Gd and free ligand in solution of Gd chelates. A
technical note. Contrast Media Mol. Imaging 2006, 1, 184−188.
(12) Laurent, S.; Vander Elst, L.; Muller, R. N. Comparative study of
the physicochemical properties of six clinical low molecular weight
gadolinium contrast agents. Contrast Media Mol. Imaging 2006, 1,
128−137.
(13) Vander Elst, L.; Sessoye, A.; Laurent, S.; Muller, R. N. Is the
theoretical fitting of the proton nuclear magnetic relaxation dispersion
(NMRD) curves of paramagnetic complexes improved by independ-
ent measurement of their self-diffusion coefficients? Helv. Chim. Acta
2005, 88, 574−587.
(14) Laurent, S.; Vander Elst, L.; Houze, S.; Guerit, N.; Muller, R. N.
Synthesis and characterization of various benzyl diethylenetriamine-
pentaacetic acids (dtpa) and their paramagnetic complexes, potential
contrast agents for magnetic resonance imaging. Helv. Chim. Acta
2000, 83, 394−406.
́
Ardenne, are thanked. Maite Callewaert (URCA, ICMR 7312)
and Claudio Palmieri (Pr P. Duez Laboratory, UMons) are
warmly thanked for their help in DLS and ICP-OES
experiments, respectively.
REFERENCES
■
(1) Doan, B.-T.; Meme, S.; Beloeil, J.-C. In The Chemistry of Contrast
Agents in Medical Magnetic Resonance Imaging, 2nd ed.; Merbach, A.,
Helm, L.; Toth, E., Eds.; John Wiley and Sons: Chichester, 2013; p 1.
(2) Wahsner, J.; Gale, E. M.; Rodriguez-Rodriguez, A.; Caravan, P.
Chemistry of MRI contrast agents: current challenges and new
frontiers. Chem. Rev. 2019, 119, 957−1057.
(3) Yang, C.-T.; Chuang, K.-H. Gd(III) chelates for MRI contrast
agents: from high relaxivity to ‘’smart’’, from blood pool to blood-
brain barrier permeable. MedChemComm 2012, 3, 552−565.
́
(4) Port, M.; Idee, J. M.; Medina, C.; Robic, C.; Sabatou, M.; Corot,
C. Efficiency, thermodynamic and kinetic stability of marketed
gadolinium chelates and their possible clinical consequences: a critical
review. BioMetals 2008, 21, 469−490.
́
(5) Idee, J. M.; Port, M.; Medina, C.; Lancelot, E.; Fayoux, E.; Ballet,
S.; Corot, C. Possible involvement of gadolinium chelates in the
pathophysiology of nephrogenic systemic fibrosis: a critical review.
Toxicology 2008, 248, 77.
(6) (a) Botta, M.; Tei, L. Relaxivity Enhancement in Macro-
molecular and Nanosized Gd III -Based MRI Contrast Agents. Eur. J.
Inorg. Chem. 2012, 2012, 1945−1960. (b) Bryson, J. M.; Reineke, J.
W.; Reineke, T. M. Macromolecular imaging agents containing
lanthanides: Can conceptual promise lead to clinical potential?
Macromolecules 2012, 45, 8939−8952. (c) Tang, J.; Sheng, Y.; Hu, H.;
Shen, Y. Macromolecular MRI contrast agents: structures, properties
and applications. Prog. Polym. Sci. 2013, 38, 462−502. (d) Zhou, Z.;
Qutaish, M.; Han, Z.; Schur, R. M.; Liu, Y.; Wilson, D. L.; Lu, Z.-R.
MRI detection of breast cancer micrometastases with a fibronectin-
targeting contrast agent. Nat. Commun. 2015, 6, 7984.
(15) Sahinturk, V.; Kacar, S.; Vejselova, D.; Kutlu, H. M. Synthesis
and characterization of various benzyl diethylenetriaminepentaacetic
acids (dtpa) and their paramagnetic complexes, potential contrast
agents for magnetic resonance imaging. Toxicol. Ind. Health 2018, 34,
481−489.
(7) (a) Villaraza, A. J.; Bumb, A.; Brechbiel, M. W. Macromolecules,
dendrimers, and nanomaterials in magnetic resonance imaging: the
interplay between size, function, and pharmacokinetics. Chem. Rev.
2010, 110, 2921−2959. (b) Mc Mahon, M.; Bulte, J. W. M. Two
decades of dendrimers as versatile MRI agents: a tale with and
without metals. WIREs Nanomed. Nanobiotechnol. 2018, 10,
No. e1496.
́
(16) Farcal, L.; Torres Andon, F.; Di Cristo, L.; Rotoli, B. M.;
Bussolati, O.; Bergamaschi, E.; Mech, A.; Hartmann, N. B.;
Rasmussen, K.; Juan Riego-Sintes, J.; Ponti, J.; Kinsner Ovaskainen,
A.; Rossi, F.; Oomen, A.; Bos, P.; Chen, R.; Bai, R.; Chen, C.; Rocks,
L.; Fulton, N.; Ross, B.; Hutchison, G.; Tran, L.; Mues, S.; Ossig, R.;
Schnekenburger, J.; Campagnolo, L.; Vecchione, L.; Pietroiusti, A.;
Fadeel, B. Comprehensive in vitro toxicity testing of a panel of
representative oxide nanomaterials: first steps towards an intelligent
testing strategy. PLoS One 2015, 10, No. e0127174.
(8) (a) Bryant, L. H.; Brechbiel, M. W.; Wu, C.; Bulte, J. W. M.;
Herynek, V.; Frank, J. A. Synthesis and relaxometry of high-generation
(G5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J.
Magn. Reson. Imaging 1999, 9, 348−352. (b) Laus, S.; Sour, A.; Ruloff,
A.; Toth, E.; Merbach, A. E. Rotational dynamics Account for pH-
dependent relaxivities of PAMAM dendrimeric, Gd-based potential
MRI contrast agents. Chem. - Eur. J. 2005, 11, 3064−3076.
(c) Lebduskova, P.; Sour, A.; Helm, L.; Toth, E.; Kotek, J.; Lukes,
I.; Merbach, A. E. Phosphinic derivative of DTPA conjugated to a G5
(17) Sambale, F.; Stahl, F.; Rudinger, F.; Seliktar, D.; Kasper, C.;
̈
Bahnemann, D.; Scheper, T. Iterative cellular screening system for
nanoparticle safety testing. J. Nanomater. 2015, Article ID 691069 .
(18) Zanini, D.; Roy, R. Novel dendritic N-sialosides: synthesis of
glycodendrimers based on a 3,3′-iminobis(propylamine) core. J. Org.
Chem. 1996, 61, 7348−7354.
1
PAMAM dendrimer: an 17O and H relaxation study of its Gd(III)
complex. Dalton Trans. 2006, 3399−3406. (d) Jaszberenyi, Z.;
Moriggi, L.; Schmidt, P.; Weidensteiner, C.; Kneuer, R.; Merbach, A.
E.; Helm, L.; Toth, E. Physicochemical and MRI characterization of
Gd3+-loaded polyamidoamine and hyperbranched dendrimers. JBIC, J.
Biol. Inorg. Chem. 2007, 12, 406−420. (e) Nwe, K.; Bernardo, M.;
Regino, C. A. S.; Williams, M.; Brechbiel, M. W. Comparison of MRI
properties between derivatized DTPA and DOTA gadolinium-
dendrimer conjugates. Bioorg. Med. Chem. 2010, 18, 5925−5931.
(f) Gugliotta, G.; Botta, M.; Tei, L. AAZTA-based bifunctional
chelating agents for the synthesis of multimeric/dendrimeric MRI
contrast agents. Org. Biomol. Chem. 2010, 8, 4569−4574. (g) Floyd,
W. C.; Klemm, P. J.; Smiles, D. E.; Kohlgruber, A. C.; Pierre, V. C.;
Mynar, J. L.; Frechet, J. M. J.; Raymond, K. N. Conjugation effects of
various linkers on Gd(III) MRI contrast agents with dendrimers:
optimizing the hydroxypyridinonate (HOPO) ligands with nontoxic,
degradable esteramide (EA) dendrimers for high relaxivity. J. Am.
Chem. Soc. 2011, 133, 2390−2393. (h) Tei, L.; Gugliotta, G.;
(19) Zanini, D.; Roy, R. Synthesis of new S-thiosialodendrimers and
their binding properties to the sialic acid specific lectin from Limax
flavus. J. Am. Chem. Soc. 1997, 117, 2088−2095.
̈
̈
(20) Ghatnekar, J.; Hagerlof, M.; Oredsson, S.; Alm, K.; Elmroth, S.
K. C.; Persson, T. Construction of polyamine-modified uridine and
adenosine derivativesevaluation of DNA binding capacity and
cytotoxicity in vitro. Bioorg. Med. Chem. 2007, 15, 7426−7344.
(21) Raghunand, N.; Guntle, G. P.; Gokhale, V.; Nichol, G. S.;
Mash, E. A.; Jagadish, B. Design, Synthesis, and evaluation of 1,4,7,10-
tetraazacyclododecane-1,4,7-triacetic acid derived, redox-sensitive
contrast agents for magnetic resonance imaging. J. Med. Chem.
2010, 53, 6747−6757.
́
(22) Henderson, B. J.; Carper, D. J.; Gonzalez-Cestari, T. F.; Yi, B.;
Mahasenan, K.; Pavlovicz, R. E.; Dalefield, M. L.; Coleman, R. S.; Li,
J
Inorg. Chem. XXXX, XXX, XXX−XXX