S. PACKIANATHAN ET AL.
13
and ciprofloxacin for fungi). However, the results reveal that
the metal complexes have a higher inhibitory activity than the
Schiff base ligand against both Gram‐positive and Gram‐neg-
ative bacteria.
[3] X. Zhou, L. Shao, Z. Jin, J. B. Liu, H. Dai, J. X. Fang, Heteroatom Chem.
2007, 18, 55.
[
[
4] I. J. Patel, S. J. Parmar, E‐J. Chem. 2010, 7, 617.
5] K. M. Khan, M. Khan, M. Ali, M. Taha, S. Rasheed, S. Perveen, M. I.
Choudhary, Bioorg. Med. Chem. 2009, 17, 7795.
The metal complexes show better antimicrobial activity
than the ligand. According to the Overtone concept of cell
permeability, the lipid membrane surrounding a cell favours
the passage of only lipid‐soluble materials, and therefore
liposolubility is an important factor which controls antimicro-
bial activity. On chelation, the polarity of the metal ion is
reduced to a greater extent due the overlapping of the ligand
orbital and partial sharing of the positive charge of the metal
ion with donor groups. The resulting increased lipophilicity
enhances the penetration of the complexes into the lipid
membranes and blocks the metal binding sites in the enzymes
of the microorganisms. These complexes also disturb the res-
piration process of cells and thus block the synthesis of pro-
[
[
[
6] O. A. E. Gammal, Inorg. Chim. Acta 2015, 435, 73.
7] E. Akila, M. Usharani, R. Rajavel, Int. J. Pharm. Pharm. Sci. 2013, 5,573.
8] A. E. Motaleb, M. Ramadan, M. Ibrahim, Y. Shaban, J. Mol. Struct. 2011,
1
006, 348.
9] P. Viswanathamurthi, K. Natarajan, Synth. React. Inorg. Met.‐Org. Chem.
006, 36, 415.
[
2
[
10] H. Keypour, A. Shooshtari, M. Rezaeivala, F. O. Kup, H. A. Rudbari, Poly-
hedron 2015, 97, 75.
[11] M. M. Ali, M. Jesmin, M. K. Sarker, M. S. Salahuddin, M. R. Habib, J. A.
Khanam, Int. J. Biol. Chem. Sci. 2008, 2, 292.
[
12] M. T. Behnamfar, H. Hadadzadeh, J. Simpson, F. Darabi, A. Shahpiri, T.
Khayamian, M. Ebrahimi, H. A. Rudbari, M. Salimi, Spectrochim. Acta A
2015, 134, 502.
[
[
13] N. Shahabadi, S. Kashanian, F. Darabi, Eur. J. Med. Chem. 2010, 45, 4239.
[
44]
teins, which restricts further growth of the organism.
14] L. Leelavathy, S. Anbu, M. Kandaswamy, N. Karthikeyan, N. Mohan,
Polyhedron 2009, 28, 903.
[
15] M. Gaber, H. A. E. Ghamry, S. K. Fathalla, Spectrochim. Acta A 2015, 139,
4
| CONCLUSIONS
396.
[
16] J. Hong, Y. Jiao, J. Yan, W. He, Z. Guo, L. Zhu, J. Zhang, Inorg. Chim. Acta
2010, 363, 793.
In this study, a biologically significant Schiff base ligand and its
Cu(II), Ni(II), Co(II) and Zn(II) metal complexes have been
synthesized and characterized. The physicochemical and spec-
tral data reveal that all the complexes are mononuclear and
adopt square planar geometry around the metal ion. The Schiff
base complexes bind to CT DNA and such binding ability has
been explored using diverse techniques. The data obtained
prove that the complexes act as efficient metallointercalators.
The agarose gel electrophoresis studies show that the com-
plexes can promote the oxidative cleavage of plasmid DNA.
However, these observations and a more extensive study would
be necessary in order to assert that the complexes act as cleav-
age agents. The docked structures reveal that the complexes can
fit well with intercalative binding of DNAwith a binding site of
three base pairs preferably involving the A‐T residues. The
biological data indicate that the complexes have higher antimi-
crobial activity than the free Schiff base ligand. The coopera-
tive biological activities of the complexes may be helpful for
the design of metal‐based drugs.
[17] V. da Silveira, H. Benezra, J. Luz, R. Georg, C. Oliveira, A. Ferreira,
J. Inorg. Biochem. 2011, 105, 1692.
[
[
18] N. Raman, R. Mahalakshmi, L. Mitu, Spectrochim. Acta A 2014, 131, 355.
19] W. Song, J. Cheng, D. Jiang, L. Guo, M. Cai, H. Yang, Q. Lin, Spectrochim.
Acta A 2014, 121, 70.
[
[
20] P. Kavitha, M. Saritha, K. Reddy, Spectrochim. Acta A 2013, 102, 159.
21] G. Li, K. Du, J. Wang, J. Liang, J. Kou, X. Hou, L. Ji, H. Chao, J. Inorg.
Biochem. 2013, 119, 43.
[
22] M. Shebl, Spectrochim. Acta A 2014, 117, 127.
[
23] M. Saif, M. M. Mashaly, M. F. Eid, R. Fouad, Spectrochim. Acta A 2012, 92,
347.
[
24] X. J. Tan, H. Z. Liu, C. Z. Ye, J. F. Lou, Y. Liu, D. X. Xing, S. P. Li, S. L.
Liu, L. Z. Song, Polyhedron 2014, 71, 119.
[25] G. H. Wolfe, G. H. Shimer, S. T. Meehan, Biochemistry 1987, 26, 6392.
[26] M. I. Rahman, W. J. Choudhary, Bioassay Techniques for Drug Develop-
ment, Harwood Academic, Amsterdam 2001 16.
[
27] C. Muthukumar, A. Sabastiyan, M. Ramesh, M. Subramanian, M. Y.
Suvaikin, Int. J. ChemTech Res. 2012, 4, 1322.
[
28] K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Wiley, New York, 1971.
[
[
29] P. F. Rapheal, E. Manoj, M. R. P. Kurup, Polyhedron 2007, 26, 818.
ACKNOWLEDGEMENTS
30] R. Kannappan, S. Tanase, I. Mutikainen, U. Turpeinen, J. Reedijk, Inorg.
Chim. Acta 2005, 358, 383.
The authors express their heartfelt thanks to the College Man-
aging Board, Principal and Head of the Department of Chem-
istry, VHNSN College for providing necessary research
facilities. IIT Bombay and CDRI, Lucknow, are gratefully
acknowledged for providing instrumental facilities.
[31] D. Sakthilatha, R. Rajavel, Chem. Sci. Trans. 2013, 2, 711.
[32] F. E. Mabbs, D. Collison, Electron Paramagnetic Resonance of Transition
Metal Compounds, Elsevier, Amsterdam, 1992.
[
33] B. J. Hathaway, in Comprehensive Coordination Chemistry, Vol. 5 (Eds: G.
Wilkinson, R. D. Gillard, J. A. McCleverty), Pergamon Press, Oxford, 1987,
p. 534.
REFERENCES
[
34] B. J. Hathaway, D. E. Billing, Coord. Chem. Rev. 1970, 5, 143.
[
[
1] N. Charef, F. Sebti, L. Arrar, M. Djarmouni, N. Boussoualim, A. Baghiani,
S. Khennouf, A. Ourari, M. A. Al Damen, M. S. Mubarak, D. G. Peters,
Polyhedron 2015, 85, 450.
[35] M. Choudhary, R. N. Patel, S. P. Rawat, J. Mol. Struct. 2014, 1070, 94.
[
36] M. Iqbal, S. Ali, M. Nawaz Tahir, N. Muhammad, N. A. Shah, M. R. Sohail,
V. Pandarinathan, J. Mol. Struct. 2015, 1093, 135.
[
37] S. Sathyanarayana, J. Dabroniak, J. Chaires, Biochemistry 1992, 31, 9319.
2] A. Gulcu, M. Tumer, H. Demirelli, R. A. Wheatley, Inorg. Chim. Acta 2005,
358, 1785.
[38] L. Jin, P. Yang, J. Inorg. Biochem. 1997, 68, 79.