2066
VASHURIN et al.
1
media with the simultaneous distortion of its ꢀchroꢀ
π
keff
104, s−1 g−
×
mophore system and the formation of lowꢀtemperaꢀ
ture colorless products [31]. A 5–10% reduction in
catalytic activity that corresponding to technological
requirements was also observed for phthalocyanine
catalysts.
4
2
3
3
2
1
ACKNOWLEDGMENTS
This work was supported by the Russian Foundaꢀ
tion for Basic Research (project no. 13ꢀ03ꢀ00615ꢀa).
1
REFERENCES
1. S. Rayati, S. Zakavi, E. Bohloulbandi, et al., Polyheꢀ
0
2
4
6
8
10
dron 34, 102 (2012).
Number of cycle
2. A. Ghaemi, S. Rayati, and S. Zakavic, Macroheterocyꢀ
cles
3. A. S. Vashurin, S. G. Pukhovskaya, A. S. Semeikin, and
O. A. Golubchikov, Macroheterocycles (1), 72
(2012).
4. A. S. Vashurin, T. V. Tikhomirova, N. A. Futerman,
et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhꢀ
nol. 55 (8), 122 (2012).
4, 18 (2011).
Fig. 2.
k
versus the number of oxidation cycles at 303 K
eff
for (1) CoPA, (2) CoPcR , and (3) CoPcR .
1 2
5
Phthalocyanine catalysts displayed better SDC oxiꢀ
dation efficiency even at 298 K. Effective SDC oxidation
rate constants
CoPcR1 and CoPcR2, respectively—an order of magꢀ
nitude higher than for CoPA.
keff = 3.5
×
10–4 and 2.3 10–4 s–1 g–1 for
×
5. K. Inoue, Progress Polym. Sci. 25, 453 (2000).
6. M. Hassanein, S. Gerges, M. Abdo, and S. ElꢀKhalafy,
The difference between the values of keff for phthaꢀ
locyanines CoPcR1 and CoPcR2 is quite likely due to
the effect of the spacer group of the peripheral substitꢀ
uent of a phthalocyanine molecule with the resulting
redistribution of electron density in the macrocyclic
ring. The nitrogen atom in the peripheral substituent
shifts the electron density to the macrocycle, thereby
hindering the coordination of dithiocarbamate and
oxygen to the central cobalt cation. In contrast, the
oxygen atom shifts the electron density from the macꢀ
roring, thereby raising the probability of SDC–phthaꢀ
locyanine–substrate coordination interactions.
When studying the catalytic activity of CoPA in a
series of consecutive experiments (Fig. 2), the catalyst
was found to deactivate by 60% as early as the second
catalytic cycle, limiting the possibilities for its indusꢀ
trial application. The behavior of this catalyst in subꢀ
sequent cycles is identical, and its activity remains
unchangeable up to the tenth cycle. However, even
though keff is 2.3 times higher than for noncatalytic
oxidation, this is insufficient to obtain highꢀpurity thiꢀ
uram sulfide.
J. Mol. Catal. A: Chem. 240, 22 (2005).
7. C. Fabbri, C. Aurisicchio, and O. Lanzalunga, Central
Eur. J. Chem. 6, 145 (2008).
8. V. N. Nemykin, A. E. Polshyna, S. A. Borisenkova, and
V. V. Strelko, J. Mol. Catal. A: Chem. 264, 103 (2007).
9. G. Ochoa, C. Gutierrez, I. Ponce, et al., J. Electroanal.
Chem. 639, 88 (2010).
10. T. Buck, H. Bohlen, and D. Wöhrle, J. Mol. Catal. A:
Chem. 80, 253 (1993).
11. M. Hoffman, Sci. Total Environ. 64, 99 (1987).
12. E. R. Birnbaum, M. W. Grinstaff, J. A. Labinger, et al.,
J. Mol. Catal. A: Chem. 104, L119 (1995).
13. B. D. Berezin and N. S. Enikolopyan, Metalloporphyꢀ
rins (Nauka, Moscow, 1988) [in Russian].
14. A. Kh. Sharipov, Khim. Tekhnol. Topl. Masel, No. 4, 4
(1994).
15. D. L. Burdick and W. L. Leffler, Petrochemicals in Nonꢀ
technical Language (PennWell, Tulsa, Oklahoma, 1990;
OlimpꢀBiznes, Moscow, 2001).
16. Yu. S. Marfin, A. S. Vashurin, E. V. Rumyantsev, and
S. G. Pukhovskaya, J. SolꢀGel Sci. Technol. 66, 306
(2013).
17. A. M. Mazgarov and A. F. Vil’danov, Pet. Chem. 39
,
CONCLUSIONS
336 (1999).
The drop in the catalytic activity of CoPA is likely
due to the saturation of its active sites and the formaꢀ
tion of oxygen adducts [30] that obstruct substrate–
porphyrazine–oxygen coordination interaction and
the transfer of electron pairs.
18. A. M. Mazgarov, A. F. Vil’danov, and S. N. Sukhov,
Khim. Tekhnol. Topl. Masel 40 (6), 11 (1996).
19. A. Goifman, J. Guna, V. Gitisa, et al., Appl. Catal. B:
Environ. 54, 225 (2004).
20. M. Kimura, Y. Yamaguchi, and T. Koyama, J. Porphyr.
Phthalocyan. 1, 309 (1997).
21. V. Iliev and A. Mihaylova, J. Photochem. Photobiol. A:
The reduction in catalytic activity upon moving
from CoPcR1 and CoPcR2 to CoPA is due to the
destruction of the macroring in strongly alkaline
Chem. 149, 23 (2002).
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
Vol. 88
No. 12 2014