Journal of the American Chemical Society
Present Address
Communication
Stereoselective and Ring Selective Synthesis of Tetrahydrofuran and
Tetrahydropyran Systems. J. Am. Chem. Soc. 1989, 111, 5330−5334.
h) Valentine, J. C.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K.
†
Department of Chemistry, University of Zurich, Zurich CH
(
8057, Switzerland
I. Biomimetic Synthesis of trans,syn,trans-Fused Polyoxepanes:
Remarkable Substituent Effects on the endo-Regioselective Oxacycli-
zation of Polyepoxides. J. Am. Chem. Soc. 2005, 127, 4586−4587.
Notes
The authors declare no competing financial interest.
(
i) Still, W. C.; Romero, A. G. Model for the Polyepoxide Cyclization
Route to Polyether Antibiotics. J. Am. Chem. Soc. 1986, 108, 2105−
106. (j) Rodríguez-Lopez, J.; Crisostomo, P. F.; Ortega, N.; Lopez-
ACKNOWLEDGMENTS
■
2
́
́
́
We thank NMR and MS platforms for services, and the
University of Geneva, the Swiss National Centre of
Competence in Research (NCCR) Chemical Biology, the
NCCR Molecular Systems Engineering and the Swiss NSF for
financial support. A.F. thanks the MINECO/AEI (project
CTQ2017-85821-R, FEDER funds) of Spain for financial
support. J.L.-A. is a Curie Fellow.
Rodríguez, M.; Martín, V.; Martín, T. Epoxide-Opening Cascades
Triggered by a Nicholas Reaction: Total Synthesis of Teurilene.
Angew. Chem., Int. Ed. 2013, 52, 3659−3662. (k) Pinacho
Crisostomo, F. R.; Lledo, A.; Shenoy, S. R.; Iwasawa, T.; Rebek, J.,
Jr. Recognition and Organocatalysis with a Synthetic Cavitand
Receptor. J. Am. Chem. Soc. 2009, 131, 7402−7410. (l) Zhu, Y.;
Wang, Q.; Cornwall, R. G.; Shi, Y. Organocatalytic Asymmetric
Epoxidation and Aziridination of Olefins and Their Synthetic
Applications. Chem. Rev. 2014, 114, 8199−8256. (m) Parker, R. E.;
Isaacs, N. S. Mechanisms of Epoxide Reactions. Chem. Rev. 1959, 59,
REFERENCES
■
(
1) Zhao, Y.; Benz, S.; Sakai, N.; Matile, S. Selective Acceleration of
7
37−799.
Disfavored Enolate Addition Reactions by Anion−π Interactions.
(
5) (a) Nakanishi, K. The Chemistry of Brevetoxins: A Review.
Chem. Sci. 2015, 6, 6219−6223.
Toxicon 1985, 23, 473−479. (b) Nicolaou, K. C.; Rutjes, F. P. J. T.;
Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E. Total
Synthesis of Brevetoxin B. 2. Completion. J. Am. Chem. Soc. 1995,
(
2) (a) Bornhof, A.-B.; Bauza, A.; Aster, A.; Vauthey, E.; Pupier, M.;
̀
Frontera, A.; Sakai, N.; Matile, S. Synergistic Anion−(π) −π Catalysis
n
on π-Stacked Foldamers. J. Am. Chem. Soc. 2018, 140, 4884−4892.
1
17, 1173−1174.
(
(
b) Zhang, X.; Liu, L.; Lopez-Andarias, J.; Wang, C.; Sakai, N.; Matile,
́
6) (a) Cane, D. E.; Celmer, W. D.; Westley, J. W. Unified
S. Anion−π Catalysis: Focus on Nonadjacent Stereocenters. Helv.
Chim. Acta 2018, 101, e1700288. (c) Cotelle, Y.; Lebrun, V.; Sakai,
N.; Ward, T. R.; Matile, S. Anion-π Enzymes. ACS Cent. Sci. 2016, 2,
Stereochemical Model of Polyether Antibiotic Structure and Bio-
genesis. J. Am. Chem. Soc. 1983, 105, 3594−3600. (b) Nakata, T.;
Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. A
Total Synthesis of Lasalocid A. J. Am. Chem. Soc. 1978, 100, 2933−
935. (c) Collum, D. B.; McDonald, J. H., III; Still, W. C. Synthesis of
the Polyether Antibiotic Monensin. 3. Coupling of Precursors and
3
(
88−393.
3) (a) Giese, M.; Albrecht, M.; Rissanen, K. Experimental
2
Investigation of Anion−π Interactions − Applications and Bio-
chemical Relevance. Chem. Commun. 2016, 52, 1778−1795.
Transformation to Monensin. J. Am. Chem. Soc. 1980, 102, 2120−
(
b) Chifotides, H. T.; Dunbar, K. R. Anion−π Interactions in
2
121.
(
Supramolecular Architectures. Acc. Chem. Res. 2013, 46, 894−906.
c) Wang, D.-X.; Wang, M.-X. Anion Recognition by Charge Neutral
Electron-Deficient Arene Receptors. Chimia 2011, 65, 939−943.
d) Ballester, P. Experimental Quantification of Anion−π Interactions
7) Baldwin, J. E. Rules for Ring Closure. J. Chem. Soc., Chem.
Commun. 1976, 734−736.
8) Zhao, Y.; Huang, G.; Besnard, C.; Mareda, J.; Sakai, N.; Matile,
S. Big, Strong, Neutral, Twisted, and Chiral−π Acids. Chem. - Eur. J.
015, 21, 6202−6207.
9) Wang, C.; Miros, F. N.; Mareda, J.; Sakai, N.; Matile, S.
(
(
(
in Solution Using Neutral Host−Guest Model Systems. Acc. Chem.
Res. 2013, 46, 874−884. (e) Bauza, A.; Mooibroek, T. J.; Frontera, A.
The Bright Future of Unconventional σ/π-Hole Interactions.
ChemPhysChem 2015, 16, 2496−2517. (f) Belanger-Chabot, G.; Ali,
A.; Gabbai, F. P. On the Reaction of Naphthalene Diimides with
Fluoride Ions: Acid/Base versus Redox Reactions. Angew. Chem., Int.
Ed. 2017, 56, 9958−9961. (g) He, Q.; Ao, Y.-F.; Huang, Z.-T.; Wang,
D.-X. Self-Assembly and Disassembly of Vesicles as Controlled by
Anion−π Interactions. Angew. Chem., Int. Ed. 2015, 54, 11785−
2
(
Asymmetric Anion−π Catalysis on Perylenediimides. Angew. Chem.,
Int. Ed. 2016, 55, 14422−14426.
(
10) (a) Lopez-Andarias, J.; Bauza, A.; Sakai, N.; Frontera, A.;
̀
Matile, S. Remote Control of Anion−π Catalysis on Fullerene-
Centered Catalytic Triads. Angew. Chem., Int. Ed. 2018, 57, 10883−
1
0887. (b) Lopez-Andarias, J.; Frontera, A.; Matile, S. Anion−π
́
Catalysis on Fullerenes. J. Am. Chem. Soc. 2017, 139, 13296−13299.
11790. (h) Xu, R.-B.; Wang, Q.-Q.; Ao, Y.-F.; Li, Z.-Y.; Huang, Z.-T.;
(
11) (a) Robertson, C. C.; Mackenzie, H. W.; Kosikova, T.; Philp,
Wang, D.-X. Anionic Head Containing Oxacalix[2]arene[2]triazines:
Synthesis and Anion−π-Directed Self-Assembly in Solution and Solid
State. Org. Lett. 2017, 19, 738−741.
D. An Environmentally Responsive Reciprocal Replicating Network. J.
Am. Chem. Soc. 2018, 140, 6832−6841. (b) Cullen, W.; Metherell, A.
J.; Wragg, A. B.; Taylor, C. G. P.; Williams, N. H.; Ward, M. D.
Catalysis in a Cationic Coordination Cage Using a Cavity-Bound
Guest and Surface-Bound Anions: Inhibition, Activation, and
Autocatalysis. J. Am. Chem. Soc. 2018, 140, 2821−2828. (c) Semenov,
S. N.; Belding, L.; Cafferty, B. J.; Mousavi, M. P. S.; Finogenova, A.
M.; Cruz, R. S.; Skorb, E. V.; Whitesides, G. M. Autocatalytic Cycles
in a Copper-Catalyzed Azide−Alkyne Cycloaddition Reaction. J. Am.
Chem. Soc. 2018, 140, 10221−10232. (d) Altay, Y.; Tezcan, M.; Otto,
S. Emergence of a New Self-Replicator from a Dynamic
Combinatorial Library Requires a Specific Pre-Existing Replicator. J.
Am. Chem. Soc. 2017, 139, 13612−13615. (e) Soai, K.; Kawasaki, T.;
Matsumoto, A. The Origins of Homochirality Examined by Using
Asymmetric Autocatalysis. Chem. Rec. 2014, 14, 70−83. (f) Xu, S.;
Giuseppone, N. Self-Duplicating Amplification in a Dynamic
Combinatorial Library. J. Am. Chem. Soc. 2008, 130, 1826−1827.
(g) Severin, K.; Lee, D. H.; Martinez, J. A.; Ghadiri, M. R. Peptide
Self-Replication via Template-Directed Ligation. Chem. - Eur. J. 1997,
3, 1017−1024. (h) Walde, P.; Wick, R.; Fresta, M.; Mangone, A.;
Luisi, P. L. Autopoietic Self-Reproduction of Fatty Acid Vesicles. J.
(4) (a) Vilotijevic, I.; Jamison, T. F. Epoxide-Opening Cascades in
the Synthesis of Polycyclic Polyether Natural Products. Angew. Chem.,
Int. Ed. 2009, 48, 5250−5281. (b) Byers, J. A.; Jamison, T. F. Entropic
Factors Provide Unusual Reactivity and Selectivity in Epoxide-
Opening Reactions Promoted by Water. Proc. Natl. Acad. Sci. U. S. A.
2
013, 110, 16724−16729. (c) Schreiber, S. L.; Sammakia, T.; Hulin,
B.; Schulte, G. The Epoxidation of Unsaturated Macrolides.
Stereocontrolled Routes to Ionophore Subunits. J. Am. Chem. Soc.
1
986, 108, 2106−2108. (d) Gruber, K.; Zhou, B.; Houk, K. N.;
Lerner, R. A.; Shevlin, C. G.; Wilson, I. A. Structural Basis for
Antibody Catalysis of a Disfavored Ring Closure Reaction.
Biochemistry 1999, 38, 7062−7074. (e) Russell, S. T.; Robinson, J.
A.; Williams, D. J. A Diepoxide Cyclization Cascade Initiated through
the Action of Pig Liver Esterase. J. Chem. Soc., Chem. Commun. 1987,
3
51−352. (f) Xiong, Z.; Corey, E. J. Simple Enantioselective Total
Synthesis of Glabrescol, a Chiral C -Symmetric Pentacyclic
2
Oxasqualenoid. J. Am. Chem. Soc. 2000, 122, 9328−9329.
(
g) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C. K.
Activation of 6-endo over 5-exo Hydroxy Epoxide Openings.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX