97-99-4Relevant articles and documents
Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal-Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation
Wang, Huanjun,Li, Xiaodan,Lan, Xiaocheng,Wang, Tiefeng
, p. 2121 - 2128 (2018)
Highly dispersed NiCo bimetallic alloy nanoparticles have been successfully immobilized on the SiO2 frameworks by using heteronuclear metal-organic frameworks (MOFs) as metal alloy precursors. Catalyst characterizations revealed that the average size of NiCo alloy particles was less than 1 nm, with a total metal loading of about 20 wt %. As compared to individual Ni or Co MOF-derived catalysts and the catalysts prepared by the conventional impregnation method, the ultrafine NiCo/SiO2-MOF catalyst showed a much better catalytic performance in the catalytic hydrogenation of furfuryl alcohol (FA) to tetrahydrofurfuryl alcohol (THFA) under mild conditions, giving 99.8% conversion of FA and 99.1% selectivity to THFA. It was found that a significant synergistic effect existed between Co and Ni within the subnanometer NiCo/SiO2-MOF catalyst, which was 2 and 20 times more active than Ni/SiO2-MOF and Co/SiO2-MOF, respectively.
Primary Anion-π Catalysis and Autocatalysis
Zhang, Xiang,Hao, Xiaoyu,Liu, Le,Pham, Anh-Tuan,López-Andarias, Javier,Frontera, Antonio,Sakai, Naomi,Matile, Stefan
, p. 17867 - 17871 (2018)
Epoxide-opening ether cyclizations are shown to occur on π-acidic aromatic surfaces without the need of additional activating groups and with autocatalytic amplification. Increasing activity with the intrinsic π acidity of benzenes, naphthalenediimides (NDIs) and perylenediimides (PDIs) support that anion-π interactions account for function. Rate enhancements maximize at 270 for anion-π catalysis on fullerenes and at 5100 M-1 for autocatalysis. The occurrence of anion-π autocatalysis is confirmed with increasing initial rates in the presence of additional product. Computational studies on autocatalysis reveal transition state and product forming a hydrogen-bonded noncovalent macrocycle, like holding their hands and dancing on the active π surface, with epoxide opening and nucleophile being activated by anion-π interactions and hydrogen bonds to the product, respectively.
A facile conversion of furfural to novel tetrahydrofurfuryl hemiacetals
Dobro?ka, Edmund,Fulajtárová, Katarína,Horváth, Bla?ej,Hronec, Milan,Liptaj, Tibor
, (2020)
An entirely new and highly selective method for preparation of novel tetrahydrofurfuryl hemiacetals is described. The process is based on the catalytic hydrogenation of furfural in an alcohol under mild reaction conditions and at very short reaction times. As a highly active and selective catalyst palladium supported on calcium carbonate is used. Basic sites of the catalyst support enhance the formation of furfuryl hemiacetal as the intermediate which is instantaneously hydrogenated into stable tetrahydrofurfuryl hemiacetal. About 85–90 % yields of tetrahydrofurfuryl hemialkylacetals can be achieved within 20 min by reaction of furfural in alcoholic solutions at 60 °C and 0.3 MPa of hydrogen. The mechanism of reductive acetalization of furfural into tetrahydrofurfuryl hemialkylacetals is proposed.
Highly selective low-temperature hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol catalysed by hectorite-supported ruthenium nanoparticles
Khan, Farooq-Ahmad,Vallat, Armelle,Suess-Fink, Georg
, p. 1428 - 1431 (2011)
Metallic ruthenium nanoparticles intercalated in hectorite (particle size ~ 4 nm) were found to catalyse the hydrogenation of furfuryl acohol to give tetrahydrofurfuryl alcohol in methanolic solution under mild conditions. The best results were obtained at 40 °C under a hydrogen pressure of 20 bar (conversion 100%, selectivity > 99%). After a total turnover number of 1423, the hectorite supported ruthenium nanoparticles are deactivated but can be recycled and regenerated.
Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol
Pendem, Saikiran,Bolla, Srinivasa Rao,Morgan, David J.,Shinde, Digambar B.,Lai, Zhiping,Nakka, Lingaiah,Mondal, John
, p. 8791 - 8802 (2019)
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.
Highly selective hydrogenation of furfural and levulinic acid over Ni0.09Zn/NC600 derived from ZIFW-8
Li, Zhi-Xin,Wei, Xian-Yong,Liu, Guang-Hui,Meng, Xing-Long,Yang, Zheng,Niu, Shuo,Zhang, Di,Gao, Hua-Shuai,Ma, Zhi-Hao,Zong, Zhi-Min
, (2020)
Highly selective hydrogenation of furfural and levulinic acid (LA) was studied over Ni0.09Zn/NC600 derived from zeolitic imidazolate frameworks. The existence of active Ni3ZnC0.7 particles in Ni0.09Zn/NC600 was confirmed by multiple characterizations. As a result, over Ni0.09Zn/NC600, 99.7% of furfural conversion (FC) and 100% of furan-2-ylmethanol selectivity (FMS) were achieved in isopropanol (IP) at 170 °C for 2 h, while FC and (tetrahydrofuran-2-yl)methanol (THFM) selectivity are 97.5% and 86.4% in water at 150 °C for 1 h. Over the same catalyst, LA was completely converted to γ-valerolactone in water at 95 °C for 0.5 h. The catalyst is still highly active after 6 cycles of recycling with 92.8% of FC and 100% of FMS in IP at 170 °C for 1.5 h and 90.1% of LA conversion and 100% of γ-valerolactone selectivity in water at 80 °C for 0.5 h.
A novel Ru-polyethersulfone (PES) catalytic membrane for highly efficient and selective hydrogenation of furfural to furfuryl alcohol
Bagnato,Figoli,Ursino,Galiano,Sanna
, p. 4955 - 4965 (2018)
A novel catalytic membrane has been synthesised, characterised and evaluated for the selective hydrogenation of furfural to furfuryl alcohol. Unlike conventional methods, involving high pressure and high H2:feed ratios, this work proposes an innovative ruthenium based Catalytic Membrane Reactor (CMR) to overcome mass transfer limitations, resulting in low H2 requirements, high catalytic activity and high selectivity towards furfuryl alcohol. A UV-curable hydrophilic anionic monomer acrylic acid was used as a coating material on a commercial PES membrane and subsequently Ru nanoparticles were added. The hydrogenation of furfural was carried out in a customised catalytic membrane reactor under mild conditions: 70 °C and 7 bar, exhibiting high catalytic activity towards furfuryl alcohol (selectivity >99%) with turnover frequency (TOF) as high as 48000 h-1, 2 orders of magnitude higher than those obtained so far.
High-Temperature Synthesis of Carbon-Supported Bimetallic Nanocluster Catalysts by Enlarging the Interparticle Distance
Zuo, Lu-Jie,Xu, Shi-Long,Wang, Ao,Yin, Peng,Zhao, Shuai,Liang, Hai-Wei
supporting information, p. 2719 - 2723 (2022/02/16)
Supported bimetallic nanoparticle catalysts with small size have attracted wide research attention in catalysis but are difficult to synthesize because high-temperature annealing required for alloying inevitably accelerates metal sintering and leads to larger particles. Here, we report a simple and scalable critical interparticle distance method for the synthesis of a family of bimetallic nanocluster catalysts with an average particle size of only 1.5 nm by using large-surface-area carbon black supports at high temperatures, which consist of 12 diverse combinations of 3 noble metals (Pt, Ru, and Rh) and 4 other metals (Cr, Fe, Zr, and Sn). In this strategy, high-temperature treatments ensure the formation of alloyed bimetallic nanoparticles and enlargement of the interparticle distance on high-surface-area supports significantly suppresses metal sintering. The prepared ultrafine Pt2Sn and RuSn nanocluster catalysts exhibited enhanced performance in catalyzing the synthesis of aromatic secondary amines and the selective hydrogenation of furfural, respectively.
Selective aqueous-phase hydrogenation of furfural to cyclopentanol over Ni-based catalysts prepared from Ni-MOF composite
Chen, Changzhou,Jiang, Jianchun,Li, Jing,Ren, Jurong,Wu, Dichao,Xia, Haihong,Zhou, Minghao
, (2021/10/01)
Metal-organic frameworks (MOFs) as an emerging class of porous materials exhibit some unique advantages, including controllable composition, a large surface area, high porosity, and so on. In this work, the spherical NiMo bimetal catalysts supported on porous carbon matrix were prepared using a simple wet impregnation method and studied for selective hydrogenation of furfural (FFA). Three different catalysts were investigated including Ni/C-Mo-BTC, Ni/C-Mo-DHTA and Ni/C-Mo-PTA. Of the catalysts studied the Ni/C-Mo-BTC catalyst could achieve the highest selectivity of CPL (up to 90%) under moderate reaction conditions (140 °C, 2 MPa, 2 h) in aqueous medium. In addition, other Ni-based catalysts (Ni/C-Fe, Ni/C-Zn, Ni/C-Cu, Ni/C-Ce) were also investigated to achieve yields of 20–70% under the same reaction conditions. The influence of temperature, H2 pressure, time and solvent were investigated for the best performing catalyst. Based on the optimal reaction condition, various of furfural derivatives could also be effectively transferred to produce corresponding products. The detailed physicochemical characterization was carried out by means of XRD, SEM, TEM, XPS, NH3-TPD and Raman analysis. In the end, the optimal Ni/C-Mo0.4 catalyst could be recycled magnetically and efficiently applied in the next run for five consecutive recycling tests in the FFA hydrogenation to CPL. The results suggested Ni/C-Mo0.4 catalyst occurred to increasingly favor the formation of Ni-Mo alloys and suggested a metallic active site in FFA hydrogenation with the addition of element Mo. Mechanism study indicated that water was a key factor contributing to the formation of different desired products, which was responsible for the arrangement of furan compound.
Ru Nanoparticles on a Sulfonated Carbon Layer Coated SBA-15 for Catalytic Hydrogenation of Furfural into 1, 4-pentanediol
Cui, Kai,Qian, Wei,Shao, Zhengjiang,Zhao, Xiuge,Gong, Honghui,Wei, Xinjia,Wang, Jiajia,Chen, Manyu,Cao, Xiaoming,Hou, Zhenshan
, p. 2513 - 2526 (2021/02/05)
Furfural (FFR) is one of the most important biomass-derived chemicals. Its large-scale availability calls for the exploration of new transformation methods for further valorization. Herein, we demonstrate that Ru nanoparticles (Ru NPs)-supported on a sulfonated carbon layer coated SBA-15 can be employed as an efficient bi-functional catalyst for one step conversion of FFR into 1,4-pentanediol (1,4-PeDO). The optimum bi-functional catalyst can afford the full the conversion of FFR and 86% selectivity to 1,4-PeDO. The catalysts have been characterized thoroughly by using a complementary combination of powder X-ray diffraction, N2 adsorption–desorption, scanning/transmission electron microscopy, Fourier transform infrared spectroscopy, elemental analysis, and X-ray photoelectron spectroscopy. The characterization revealed that acidic groups (–SO3H) have been introduced on the surface of the carbon layer coated SBA-15 support after sulfonation with 98% H2SO4 and the surface acidity can be tuned facilely by the sulfonating time. Meantime, Ru(0) sites was highly dispersed via an impregnation and sequential reduction and directly adjacent to the surface –SO3H group. There existed an electronic interaction between Ru(0) sites and sulfonic groups, in which the electronic transfer from sulfonic sites to Ru(0) sites occurred. Br?nsted acid sites (–SO3H) have a significant influence on the FFR conversion and the selectivity to 1,4-PeDO. The ordered mesoporous structure, the appropriate density of acid sites and the electron-rich Ru(0) sites accounted for the the excellent performance of the catalyst for an efficient production of 1,4-PeDO from FFR. Graphic Abstract: [Figure not available: see fulltext.].