97-99-4Relevant articles and documents
Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal-Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation
Wang, Huanjun,Li, Xiaodan,Lan, Xiaocheng,Wang, Tiefeng
, p. 2121 - 2128 (2018)
Highly dispersed NiCo bimetallic alloy nanoparticles have been successfully immobilized on the SiO2 frameworks by using heteronuclear metal-organic frameworks (MOFs) as metal alloy precursors. Catalyst characterizations revealed that the average size of NiCo alloy particles was less than 1 nm, with a total metal loading of about 20 wt %. As compared to individual Ni or Co MOF-derived catalysts and the catalysts prepared by the conventional impregnation method, the ultrafine NiCo/SiO2-MOF catalyst showed a much better catalytic performance in the catalytic hydrogenation of furfuryl alcohol (FA) to tetrahydrofurfuryl alcohol (THFA) under mild conditions, giving 99.8% conversion of FA and 99.1% selectivity to THFA. It was found that a significant synergistic effect existed between Co and Ni within the subnanometer NiCo/SiO2-MOF catalyst, which was 2 and 20 times more active than Ni/SiO2-MOF and Co/SiO2-MOF, respectively.
A facile conversion of furfural to novel tetrahydrofurfuryl hemiacetals
Dobro?ka, Edmund,Fulajtárová, Katarína,Horváth, Bla?ej,Hronec, Milan,Liptaj, Tibor
, (2020)
An entirely new and highly selective method for preparation of novel tetrahydrofurfuryl hemiacetals is described. The process is based on the catalytic hydrogenation of furfural in an alcohol under mild reaction conditions and at very short reaction times. As a highly active and selective catalyst palladium supported on calcium carbonate is used. Basic sites of the catalyst support enhance the formation of furfuryl hemiacetal as the intermediate which is instantaneously hydrogenated into stable tetrahydrofurfuryl hemiacetal. About 85–90 % yields of tetrahydrofurfuryl hemialkylacetals can be achieved within 20 min by reaction of furfural in alcoholic solutions at 60 °C and 0.3 MPa of hydrogen. The mechanism of reductive acetalization of furfural into tetrahydrofurfuryl hemialkylacetals is proposed.
Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol
Pendem, Saikiran,Bolla, Srinivasa Rao,Morgan, David J.,Shinde, Digambar B.,Lai, Zhiping,Nakka, Lingaiah,Mondal, John
, p. 8791 - 8802 (2019)
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.
Craig et al.
, p. 3277 (1950)
High-Temperature Synthesis of Carbon-Supported Bimetallic Nanocluster Catalysts by Enlarging the Interparticle Distance
Zuo, Lu-Jie,Xu, Shi-Long,Wang, Ao,Yin, Peng,Zhao, Shuai,Liang, Hai-Wei
supporting information, p. 2719 - 2723 (2022/02/16)
Supported bimetallic nanoparticle catalysts with small size have attracted wide research attention in catalysis but are difficult to synthesize because high-temperature annealing required for alloying inevitably accelerates metal sintering and leads to larger particles. Here, we report a simple and scalable critical interparticle distance method for the synthesis of a family of bimetallic nanocluster catalysts with an average particle size of only 1.5 nm by using large-surface-area carbon black supports at high temperatures, which consist of 12 diverse combinations of 3 noble metals (Pt, Ru, and Rh) and 4 other metals (Cr, Fe, Zr, and Sn). In this strategy, high-temperature treatments ensure the formation of alloyed bimetallic nanoparticles and enlargement of the interparticle distance on high-surface-area supports significantly suppresses metal sintering. The prepared ultrafine Pt2Sn and RuSn nanocluster catalysts exhibited enhanced performance in catalyzing the synthesis of aromatic secondary amines and the selective hydrogenation of furfural, respectively.
Organic modifiers promote furfuryl alcohol ring hydrogenation via surface hydrogen-bonding interactions
Coan, Patrick D.,Farberow, Carrie A.,Griffin, Michael B.,Medlin, J. Will
, p. 3730 - 3739 (2021/04/07)
Interactions between surface adsorbed species can affect catalyst reactivity, and thus, the ability to tune these interactions is of considerable importance. Deposition of organic modifiers provides one method of intentionally introducing controllable surface interactions onto catalyst surfaces. In this study, Pd/Al2O3 catalysts were modified with either thiol or phosphonic acid (PA) ligands and tested in the hydrogenation of furanic species. The thiol modifiers were found to inhibit ring hydrogenation (RH) activity, with the degree of inhibition trending with the thiol surface coverage. This suggests that thiols do not strongly interact with the reactants and simply serve to block active sites on the Pd surface. PAs, on the other hand, were found to enhance RH when furfuryl alcohol (FA) was used as the reactant. Density functional theory calculations suggested that this enhancement was due to hydrogen-bonding interactions between FA-derived surface intermediates and PA modifiers. Here, installation of hydrogen-bonding groups on the Pd surface served to preferentially stabilize RH product states. Furthermore, the promotional effect on the RH of FA was observed to be greater when a higher-coverage PA was used, providing a rate more than twice that of the unmodified Pd/Al2O3. The results of this work suggest that organic ligands can be designed to impart tunable surface interactions on heterogeneous catalysts, providing an additional method of controlling catalytic performance.
In-Situ Formation of Ni-C-Al2O3 Catalyst from MOFs@Al2O3 Composite for Furfuryl Alcohol Hydrogenation to Tetrahydrofurfuryl Alcohol
Guo, Qirui,Liu, Shanshan,Wang, Yuan,Zhang, Yidong
, (2021/11/22)
Hydrogenation of biomass-derived furfuryl alcohol to widely used tetrahydrofurfuryl alcohol is an important industrial route, which however calls for a more efficient catalyst. In this work, a highly selective and stable Ni-C-Al2O3 catalyst for furfuryl alcohol hydrogenation to tetrahydrofurfuryl alcohol is reported. The catalyst precursor is prepared by in-situ growth of Ni-based metal organic frameworks (Ni-BTC) on Al2O3 and then the precursor undergoes thermal decomposition to obtain the catalyst directly. For comparison, Ni-C/Al2O3 acquired from pyrolysis of physically mixed Ni-MOFs with Al2O3 and Ni/Al2O3 prepared by impregnation method are also tested as the hydrogenation catalysts. The prepared catalysts are characterized by a series of techniques, including XRD, FT-IR, TG, TEM, SEM, XPS and BET to reveal the relationship between the catalysts structure and their performance. The results show that small metal Ni particle size and appropriate interaction between Ni and the support, which benefit from the in-situ preparation method are key factors that ensure the high furfuryl alcohol conversion (99.8%) and high selectivity to tetrahydrofurfuryl alcohol (98.2%) at moderate reaction conditions (120?°C, 30?min, 4?MPa H2). Graphical Abstract: [Figure not available: see fulltext.].