3
6
K. Tantrakarn et al. / Tetrahedron Letters 44 (2003) 33–36
and 10). We also show that the use of pressure increases
the yield of the symmetric biscalix[4]arene 7. Cal-
ixquinones 9 and 10 exhibit interesting electrochemical
obtained a white solid of 7. The product was recrystal-
lized in dichloromethane upon addition of methanol to
1
afford a white crystalline solid (2.16 g, 69%). 7: H NMR
+
properties and show a promising ability to sense Na .
spectrum (200 MHz, CDCl ) l 7.65 (s, 4H, ArOH), 7.00
3
We are currently pursuing electrochemical studies of
the compounds synthesized towards other alkali metal
ions and the results will be reported in due course.
(s, 8H, m-HArOH), 6.82 (s, 8H, m-HArOCH CH ArH),
2
2
4.55 (s, 8H, ArOCH CH OAr), 3.55 and 4.50 (d each,
2
2
JH–H=14.0 Hz, 16H, Ar CH Ar), 1.25 (s, 36H, HOAr-t-
2
C H ), 0.99 (s, 36H, ROAr-t-C H ). FAB MS (m/z):
4
9
4
9
+
+
4
1
8
367.8 [M +NH ]. Anal. calcd for 7 (C H O ): C,
92 116
8
Acknowledgements
1.86; H, 8.66. Found: C, 81.86; H, 8.86.
11. Collins, E. M.; McKervey, M. A.; Madigan, E.; Moran,
M. B.; Owens, M.; Ferguson, G.; Harris, S. J. J. Chem.
This work was financially supported by the Thailand
Research Fund (Grant no. RSA/06/2544). Authors
thank Professor Jeremy Kilburn for the ESI MS results.
Soc., Perkin Trans. 1 1991, 3137.
1
1
2. 5: H NMR spectrum (200 MHz, CDCl ) l 9.23 (s, 2H,
3
ArOH), 7.07 (s, 4H, m-HOArH), 7.01 (s, 4H, m-
ROArH), 5.2 (s, 2H, -CH CH OH), 4.29 (t, 8H,
2
2
ArOCH CH OH), 3.43 and 4.30 (d, JH–H=14.0 Hz, 8H,
2
2
References
ArCH Ar), 1.20 (s, 18H, ROAr-t-C H ), 1.19 (s, 18H,
2
4
9
HOAr-t-C H ).
3. 6: H NMR spectrum (200 MHz, CDCl ) l 7.06 (s, 4H,
4
9
1
. Cattrall, R. W. Chemical Sensors, Oxford Chemistry
Primers; Oxford Science Publisher: Oxford, UK, 1997.
. Beer, P. D. Acc. Chem. Res. 1998, 31, 71.
. (a) Cooper, J. B.; Drew, M. G. B.; Beer, P. D. J. Chem.
Soc., Dalton Trans. 2000, 2721; (b) Beer, P. D.; Hesek,
D.; Nam, K. C.; Drew, M. G. B. Organometallics 1999,
1
1
3
ROArH), 6.74 (s, 4H, HOArH), 6.67 (s, 2H, ArOH),
2
3
4.64 (m, 4H, MsCH CH O), 3.36 (m, 8H, ArCH Ar and
2
2
2
MsOCH CH O), 4.24 (d, J
=13 Hz, 4H, ArCH Ar),
2
2
H–H
2
3.23 (s, 6H, SO CH ), 1.28 (s, 18H, HOAr-t-C H ), 0.90
2 3 4 9
(
s, 18H, ROAr-t-C H ).
4 9
1
8, 3933.
1
1
4. Gutsche, C. D.; Dhawan, B.; Levine, J. A.; No, K. Y.;
4
. (a) Chung, T. D.; Kang, S. K.; Kim, H.; Kim, J. R.; Oh,
W. S.; Chang, S.-K. Chem. Lett. 1998, 1225; (b) Nam, K.
C.; Kang, S. O.; Jeong, H. S.; Jeon, S. Tetrahedron Lett.
Bauer, L. J. Tetrahedron 1983, 39, 409.
1
5. 8: H NMR spectrum (200 MHz, CDCl ) l 7.09–6.70 (m,
3
18H, HAr and ArOH), 4.78–4.12 (m, 22H, OCH CH O,
2 2
1
999, 40, 7343.
ArCH Ar and –OCH ), 3.40–3.15 (m, 8H, ArCH Ar),
2
3
2
5
. G o´ mez-Kaifer, M.; Reddy, P. A.; Gutsche, C. D.;
Echegoyen, L. J. Am. Chem. Soc. 1994, 116, 3580.
. Asfari, Z.; Weiss, J.; Vicens, J. Synlett 1993, 719.
. Tomapatanaget, B.; Pulpoka, B.; Tuntulani, T. Chem.
Lett. 1998, 1037.
. Janssen, R. G.; Verboom, W.; Reinhoudt, D. N.; Cas-
nati, A.; Freriks, M.; Pochini, A.; Ugozzoli, F.; Ungaro,
R.; Nieto, P. M.; Carramolino, M.; Cuevas, F.; Prados,
P.; de Mendoza, J. Synthesis 1993, 380.
1.30 (s, 18H, Ar-t-C H ), 1.25 (s, 18H, Ar-t-C H ), 0.92
4 9 4 9
+
4 9 4
+
(
s, 36H, Ar-t-C H ). ESI MS (m/z): 1395.2 (M +NH ).
6
7
1
1
6. 9: H NMR spectrum (200 MHz, CDCl ) l 7.10 (s, 8H,
3
ROArH), 5.86 (s, 8H, Hquinone), 4.39 (s, 8H,
OCH CH O), 4.52 and 3.00 (dd, JH–H=13.9 Hz, 16H,
2
2
8
ArCH Ar), 1.33 (s, 36H, Ar-t-C H ). ESI MS (m/z):
2
4
9
+
+
4 CO
−1
1203.4 (M +4H+NH ). IR (w ): 1664.86 cm . Anal.
calcd for 9 (C H O ·2H O): C, 74.98; H, 6.62. Found:
76
76 12
2
C, 74.99; H, 6.20.
9
. Jurczak, J.; Ostaszewski, R. J. Coord. Chem. Part B 1992,
2
1
1
7. 10: H NMR spectrum (200 MHz, CDCl ) l 7.15 (br s,
3
7, 201.
0. In a high pressure tube (Ace Glass Co., Catalog No.
648-29) equipped with valves and pressure gauge, p-tert-
12H, HArOR), 6.50 (s, 4H, Hquinone), 4.70–4.40 (m, 16H,
1
OCH CH O, ArCH Ar), 4.15 (s, 6H, -OCH ), 3.38–3.12
2
2
2
3
8
(
1
m, 8H, ArCH Ar), 1.30 (s, 36H, Ar-t-C H ), 0.80 (s,
2 4 9
8H, Ar-t-C H ). ESI MS (m/z): 1315.8 (M +4H+NH ).
butylcalix[4]arene, 1, (3.0 g, 4.62 mmol), catalytic amount
of 18-crown-6, bromoethyl tosylate, 3, (1.3 g, 4.62 mmol)
and K CO (1.3 g, 9.24 mmol) were suspended in anhy-
+
4 9 4
+
−
1
IR (wCO): 1657.14 cm . Anal. calcd for 10
C H O ·3H O): C, 76.64; H, 7.93. Found: C, 77.20;
2
3
(
drous acetonitrile (10 mL). The tube was then pressurized
86 100 10
2
H, 8.52.
with N at 50 psi. The mixture was stirred and heated at
2
1
8. CV experiments were carried out on an AUTOLAB
PGSTAT100 potentiostat using a glassy carbon working
electrode, a Ag/AgNO3 reference electrode and a plat-
inum auxiliary electrode. All experiments were performed
1
00°C for 4 days. The solution was allowed to cool to
room temperature. The pressure in the tube was then
released. The solvent was evaporated to dryness to yield
a
yellow residue. The residue was dissolved in
under N2.
dichloromethane (100 mL) and an aqueous solution of 3
M hydrochloric acid was subsequently added until the
pH of the solution reached pH 1. The mixture was
extracted with dichloromethane (3×50 mL). The com-
bined organic layer was dried over anhydrous Na SO ,
1
9. Webber, P. R. A.; Chen, G. Z.; Drew, M. G. B.; Beer, P.
D. Angew. Chem., Int. Ed. 2001, 40, 2265.
0. Beer, P. D.; Gale, P. A.; Chen, Z.; Drew, M. G. B.;
Heath, J. A.; Ogden, M. I.; Powell, H. R. Inorg. Chem.
1997, 36, 5880.
2
2
4
filtered and concentrated on rotary evaporator to