Anal. Chem. 2005, 77, 702-705
Ionic Liquids as Advantageous Solvents for
Headspace Gas Chromatography of Compounds
with Low Vapor Pressure
M. Andre,*,† J. Loidl,† G. Laus,‡ H. Schottenberger,*,§ G. Bentivoglio,§ K. Wurst,§ and K.-H. Ongania|
Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Immodal Pharmaka GmbH, Bundesstrasse 44,
6111 Volders, Austria, Institute of Inorganic Chemistry, and Institute of Organic Chemistry, University of Innsbruck,
Innrain 52a, 6020 Innsbruck, Austria
chromatography (GC),13-15 for liquid-phase microextractions,16,17
and as modifying additives for eluents in liquid chromatogra-
phy.18,19
The potential of ionic liquids as solvents for headspace
gas chromatography was investigated. Three compounds
with boiling points above 200 °C were selected to dem-
onstrate the feasibility of the concept described. 2-Ethyl-
hexanoic acid, formamide, and tri-n-butylamine as ex-
amples of acidic, neutral, and basic analytes were dissolved
in acidic 1-n-butyl-3-methylimidazolium hydrogen sulfate
(1), neutral 1-n-butyl-2,3-dimethylimidazolium dicyana-
mide (2), and 2 containing 1,8-diazabicyclo[5.4.0]undec-
7-ene to adjust basic conditions. All analytes could be
determined with limits of detection and limits of quanti-
fication in the low-ppm concentration range.
Analysis of process-related residual reactants and solvents in
pharmaceuticals, as regulated by the official authorities, plays a
tremendous role in quality assurance and quality control. The
permanently demanded improvement of analytical performance
in chemical, clinical, and pharmaceutical laboratories relies on
either simplified sample preparation or thorough chemometric
automation. For example, multivariate analysis and classification
of the respective pharmaceuticals and intermediates using near-
infrared reflectance spectroscopy are powerful tools for analytical
automation20 but, in general, simplifying analytical sample prepara-
tion bears the highest potential of improving sample throughput
and time savings in an easy manner.
Headspace gas chromatography (HSGC) is a widely used
analytical technique for the determination of volatile substances
in solids and liquids.21-23 However, for compounds with a low
vapor pressure, the sensitivity in HSGC is rather limited. The
increase of the vapor pressure by increasing the thermostating
temperature is restricted by excessive pressure buildup in the vial.
A contemporary approach to overcome this problem is the use
of ILs as versatile solvents, since these low-melting organic salts
are easily synthesized or commercially available, respectively.4
They have ideal physicochemical properties for optimized head-
space conditions, as they are chemically inert, fairly good solvents
for organic substances with moderate to high polarity. They can
be tailored as application-specific systems with remarkably high
Ionic liquids (ILs) are salts1,2 or mixtures3 of salts that melt
below room temperature. They represent an important class of
innovative solvents. Their relevance is reflected by continuous
emergence of new applications, mainly in the field of homoge-
neous catalysis.4 In technical applications, they serve as superior
electrolytes for electric devices.5 Some utilization has been also
reported for various analytical purposes, e.g., for matrix-assisted
laser desorption/ionization mass spectroscopy (MALDI-MS),6 for
capillary electrophoresis (CE),7-12 as stationary phases for gas
* Corresponding authors. E-mail: max.andre@gx.novartis.com. fax: +43 5338
200 2463. E-mail: herwig.schottenberger@uibk.ac.at. fax: +43 512 507 2934.
† Sandoz GmbH.
‡ Immodal Pharmaka GmbH.
§ Institute of Inorganic Chemistry, University of Innsbruck.
|
Institute of Organic Chemistry, University of Innsbruck.
(1) Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Chem. Eur. J.
2002, 8, 3671-3677.
(2) Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gr¨atzel,
M. Inorg. Chem. 1996, 35, 1168-1178.
(3) de Souza, R. F.; Rech, V.; Dupont, J. Adv. Synth. Catal. 2002, 344, 153-
155.
(4) Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH:
Weinheim, Germany, 2003.
(12) Mwongela, S. M.; Numan, A.; Gill, N. L.; Agbaria, R. A.; Warner, I. M. Anal.
Chem. 2003, 75, 6089-6096.
(13) Anderson, J. L.; Armstrong, D. W. Anal. Chem. 2003, 75, 4851-4858.
(14) Berthod, A.; He, L.; Armstrong, D. W. Chromatographia 2001, 53, 63-68.
(15) Armstrong, D. W.; He, L.; Liu, Y.-S. Anal. Chem. 1999, 71, 3873-3876.
(16) Liu, J.-F.; Jiang, G.-B.; Chi, Y.-G.; Cai, Y.-Q.; Zhou, Q.-X.; Hu, J.-T. Anal.
Chem. 2003, 75, 5870-5876.
(5) de Souza, R. F.; Padilha, J. C.; Goncalves, R. S.; Dupont, J. Electrochem.
Commun. 2003, 5, 728-731.
(17) Liu, J.-F.; Chi, Y.-G.; Jiang, G.-B.; Tai, C.; Peng, J.-F.; Hu, J.-T. J. Chromatogr.,
A 2004, 1026, 143-147.
(6) Armstrong, D. W.; Zhang, L.-K.; He, L. F.; Gross, M. L. Anal. Chem. 2001,
73, 3679-3686.
(18) Kaliszan, R.; Marszall, M. P.; Markuszewski, J. M.; Baczek, T.; Pernak, J.
J. Chromatogr., A 2004, 1030, 263-271.
(7) Vaher, M.; Koel, M.; Kaljurand, M. J. Chromatogr., A 2002, 979, 27-32.
(8) Qin, W.; Wei, H.; Li, S. F. Y. J. Chromatogr., A 2003, 985, 447-454.
(9) Stalcup, A. M.; Cabovska, B. J. Liq. Chromatogr. Relat. Technol. 2004, 27,
1443-1459.
(10) Vaher, M.; Koel, M.; Kaljurand, M. Electrophoresis 2002, 23, 426-430.
(11) Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A. M.
Anal. Chem. 2001, 73, 3838-3844.
(19) He, L.; Zhang, W.; Zhao, L.; Liu, X.; Jiang, S. J. Chromatogr., A 2003, 1007,
39-45.
(20) Andre, M. Anal. Chem. 2003, 75, 3460-3467.
(21) Ettre, L. S. LCGC North Am. 2002, 20, 1120, 1122-1124, 1126, 1128-
1129.
(22) Snow, N. H.; Gregory, G. C. Trends Anal. Chem. 2002, 21, 608-617.
(23) Penton, Z. E. Comprehensive Anal. Chem. 2002, 37, 279-296.
702 Analytical Chemistry, Vol. 77, No. 2, January 15, 2005
10.1021/ac048737k CCC: $30.25 © 2005 American Chemical Society
Published on Web 12/16/2004