Applied Organometallic Chemistry (2020)
Update date:2022-08-05
Topics:
Chaudhary, Nikita
Haldar, Chanchal
Kachhap, Payal
Kesharwani, Neha
Mahato, Arun Kumar
Maurya, Abhishek
Mishra, Vivek Kumar
Two vanadium (IV) complexes [VIVO(Haeae-sal)(MeOH)]+ (1) and [VIVO(Haeae-hyap)(MeOH)]+ (2) were prepared by reacting [VO(acac)2] with ligands [H2aeae-sal] (I) and [H2aeae-hyap] (II) respectively. Condensation of 2-(2-aminoethylamino)ethanol with salicylaldehyde and 2-hydroxyacetophenone produces the ligands (I) and (II) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid-state. Single-crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid-state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion (TOF value of 2.739 × 102 h?1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h?1) for the oxidative bromination of salicylaldehyde where 5-bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h?1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h?1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde.
View MoreYingkou Sanzheng Organic Chemical Co. Ltd.
Contact:+86-417-3638818
Address:25 Gengxinli Village, Daqing Road, Yingkou, Liaoning, China
Hunan Dinuo Pharmaceutical Co.,Ltd.
Contact:86-731-88280100*8561
Address:Bio-pharmaceutical industrial park, Liuyang, Hunan, China
website:http://www.dulynet.com/
Contact:025-84699383 -8003
Address:Room 503, Building 2, Chuangxinhui, No. 61 Wenjing Road, High-tech Development Zone, Pukou District, Nanjing City, Jiangsu Province Nanjing, Jiangsu
Dalian RSD International Trade Co.,Ltd.(expird)
Contact:86-22-60875058 58610575
Address:Wantong International Areas, Hongqiao District, Tianjin, China.China
Shanghai Kefu Chemical Co.,Ltd.
Contact:+86-21-34616196
Address:Room601-602, Xuhui Business Building, No.168, Yude Road, Shanghai
Doi:10.1016/S0040-4020(01)99041-6
(1966)Doi:10.1111/j.1747-0285.2011.01304.x
(2012)Doi:10.1016/0022-328X(86)80012-2
(1986)Doi:10.1016/j.bmcl.2008.01.090
(2008)Doi:10.1021/jo00294a030
(1990)Doi:10.1002/adsc.201700492
(2017)