Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-Hydroxyhexadecanoic acid, also known as 2-hydroxypalmitic acid, is a naturally occurring fatty acid that possesses a hydroxyl group attached to the second carbon atom. It is found in various plant sources and has been the subject of scientific research due to its potential biological activities and applications.

10067-06-8

Post Buying Request

10067-06-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

10067-06-8 Usage

Uses

Used in Pharmaceutical Research:
2-Hydroxyhexadecanoic acid is used as a research compound for investigating the role of hypoxia in the mechanism of action of elisidepsin. Elisidepsin is a drug that can reduce drug efficiency by inhibiting hydroxylation and altering the structure of lipid rafts in human SKBR-3, MCF-7, and MDA-MB-453 cell lines.
Used in Antiviral Research:
2-Hydroxyhexadecanoic acid is also used in studies on the antiviral activity of hydroxy fatty acids. Its potential antiviral properties make it a valuable compound for research in the development of new antiviral therapies and treatments.

Check Digit Verification of cas no

The CAS Registry Mumber 10067-06-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,0,0,6 and 7 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 10067-06:
(7*1)+(6*0)+(5*0)+(4*6)+(3*7)+(2*0)+(1*6)=58
58 % 10 = 8
So 10067-06-8 is a valid CAS Registry Number.
InChI:InChI=1/C16H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15(17)16(18)19/h15,17H,2-14H2,1H3,(H,18,19)

10067-06-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-HYDROXYHEXADECANOIC ACID

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:10067-06-8 SDS

10067-06-8Relevant articles and documents

P450Jα: A New, Robust and α-Selective Fatty Acid Hydroxylase Displaying Unexpected 1-Alkene Formation

Armbruster, Julia,Steinmassl, Mathilde,Müller Bogotá, Christina A.,Berg, Gabriele,Nidetzky, Bernd,Dennig, Alexander

, p. 15910 - 15921 (2020/10/29)

Oxyfunctionalization of fatty acids (FAs) is a key step in the design of novel synthetic pathways for biobased/biodegradable polymers, surfactants and fuels. Here, we show the isolation and characterization of a robust FA α-hydroxylase (P450Jα) which catalyses the selective conversion of a broad range of FAs (C6:0-C16:0) and oleic acid (C18:1) with H2O2 as oxidant. Under optimized reaction conditions P450Jα yields α-hydroxy acids all with >95 % regioselectivity, high specific activity (up to 15.2 U mg?1) and efficient coupling of oxidant to product (up to 85 %). Lauric acid (C12:0) turned out to be an excellent substrate with respect to productivity (TON=394 min?1). On preparative scale, conversion of C12:0 reached 83 % (0.9 g L?1) when supplementing H2O2 in fed-batch mode. Under similar conditions P450Jα allowed further the first biocatalytic α-hydroxylation of oleic acid (88 % conversion on 100 mL scale) at high selectivity and in good yields (1.1 g L?1; 79 % isolated yield). Unexpectedly, P450Jα displayed also 1-alkene formation from shorter chain FAs (≤C10:0) showing that oxidative decarboxylation is more widely distributed across this enzyme family than reported previously.

Preparative Asymmetric Synthesis of Canonical and Non-canonical α-amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids

Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd

supporting information, (2019/02/09)

Chemical and biocatalytic synthesis of non-canonical α-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-α-amino acids. In module 1, selective α-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable α-hydroxy acids (α-HAs; >90% α-selective) is shown on preparative scale (up to 2.3 g L?1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of α-HAs into l-α-AAs (20 to 99%). Enantiopure l-α-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 g L?1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs. (Figure presented.).

Preparative Asymmetric Synthesis of Canonical and Non-canonical a-amino Acids through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids

Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd

supporting information, p. 1348 - 1358 (2019/10/28)

Chemical and biocatalytic synthesis of non-canonical a-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-a-amino acids. In module 1, selective a-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable a-hydroxy acids (a-HAs; >90% a-selective) is shown on preparative scale (up to 2.3 gL1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of a-HAs into l-a-AAs (20 to 99%). Enantiopure l-a-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 gL1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs.

Synthesis of 6-Hydroxysphingosine and α-Hydroxy Ceramide Using a Cross-Metathesis Strategy

Wisse, Patrick,De Geus, Mark A. R.,Cross, Gen,Van Den Nieuwendijk, Adrianus M. C. H.,Van Rooden, Eva J.,Van Den Berg, Richard J. B. H. N.,Aerts, Johannes M. F. G.,Van Der Marel, Gijsbert A.,Codée, Jeroen D. C.,Overkleeft, Herman S.

, p. 7258 - 7265 (2015/07/27)

(Chemical Equation Presented) In this paper, a new synthetic route toward 6-hydroxysphingosine and α-hydroxy ceramide is described. The synthesis employs a cross-metathesis to unite a sphingosine head allylic alcohol with a long-chain fatty acid alkene that also bears an allylic alcohol group. To allow for a productive CM coupling, the sphingosine head allylic alcohol was protected with a cyclic carbonate moiety and a reactive CM catalyst system, consisting of Grubbs II catalyst and CuI, was employed.

Synthesis of phalluside-1 and Sch II using 1,2-metallate rearrangements

Black, Fiona J.,Kocienski, Philip J.

supporting information; experimental part, p. 1188 - 1193 (2010/06/15)

(4E,8E,10E)-9-Methyl-4,8,10-sphingatrienine, a core component of marine sphingolipids, was synthesised for the first time using a copper(i)-mediated 1,2-metallate rearrangement of a lithiated glycal as a key step. It was converted to phalluside-1, a cereb

Personal care compositions comprising solid particles enterapped in a gel network

-

, (2008/06/13)

The present invention relates to a personal care composition comprising a three dimensional gel polymeric network comprising: a. a polymer; b. one or more solid particles that are entrapped within said polymer during polymerization of said polymer; and c. a solvent in which said polymer is dispersed. Another embodiment further includes at least one second colorant that is substantially similar to an at least one first colorant which is a solid particle and wherein said second colorant is dispersed within said composition but is not entrapped in said polymer and is separate and distinct from said network. In contrast, a third embodiment allows for the at least one second colorant to be substantially different from the at least one first colorant.

COSMETIC COMPOSITIONS CONTAINING A SILOXANE ELASTOMER

-

, (2008/06/13)

A skin treatment composition is provided which includes a crosslinked non-emulsifying siloxane elastomer, a volatile siloxane and at least 50% by weight of water. Inclusion of the elastomer provides a unique liquid/powdery feel when rubbed into the skin.

Cosmetic compositions

-

, (2008/06/13)

The present invention relates to pigmented emulsion cosmetic compositions containing emulsifying silicone elastomers that provide a natural appearance to the skin upon application. In particular, these cosmetic compositions are formulated such that agglomeration of the pigment upon application to the skin is minimized.

Cosmetic compositions

-

, (2008/06/13)

A skin treatment composition is provided which includes a crosslinked siloxane elastomer gel of specific yield point, a skin-conditioning agent, a volatile siloxane and water. Inclusions of the select elastomers provide improved uniform distribution of the pigments.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 10067-06-8