Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Benzenamine, N-ethyl-4-methoxy-, also known as N-ethyl-4-methoxyaniline, is a chemical compound with the molecular formula C9H13NO and a molar mass of 151.21 g/mol. It is a clear, colorless to pale yellow liquid with a slightly sweet odor. Benzenamine, N-ethyl-4-methoxyis insoluble in water but soluble in organic solvents. It is used in the production of various industrial products, including dyes, pigments, and pharmaceuticals. However, it is considered a hazardous chemical and should be handled and stored with caution due to its potential health and environmental risks.

104-48-3 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 104-48-3 Structure
  • Basic information

    1. Product Name: Benzenamine, N-ethyl-4-methoxy-
    2. Synonyms:
    3. CAS NO:104-48-3
    4. Molecular Formula: C9H13NO
    5. Molecular Weight: 151.208
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 104-48-3.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: Benzenamine, N-ethyl-4-methoxy-(CAS DataBase Reference)
    10. NIST Chemistry Reference: Benzenamine, N-ethyl-4-methoxy-(104-48-3)
    11. EPA Substance Registry System: Benzenamine, N-ethyl-4-methoxy-(104-48-3)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 104-48-3(Hazardous Substances Data)

104-48-3 Usage

Uses

Used in Dye and Pigment Industry:
Benzenamine, N-ethyl-4-methoxy-, is used as a chemical intermediate for the synthesis of dyes and pigments. Its unique chemical structure allows for the creation of a wide range of colors and shades, making it a valuable component in the production of various colorants.
Used in Pharmaceutical Industry:
In the pharmaceutical industry, Benzenamine, N-ethyl-4-methoxy-, serves as a key building block for the development of various drugs. Its versatile chemical properties enable it to be incorporated into the molecular structures of different pharmaceutical compounds, contributing to their therapeutic effects.
Used in Chemical Research:
Benzenamine, N-ethyl-4-methoxy-, is also utilized in chemical research for the study of organic reactions and the development of new synthetic methods. Its reactivity and functional groups make it an interesting subject for researchers to explore and understand the underlying mechanisms of various chemical processes.

Check Digit Verification of cas no

The CAS Registry Mumber 104-48-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 4 respectively; the second part has 2 digits, 4 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 104-48:
(5*1)+(4*0)+(3*4)+(2*4)+(1*8)=33
33 % 10 = 3
So 104-48-3 is a valid CAS Registry Number.

104-48-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-methoxyphenylethylamine

1.2 Other means of identification

Product number -
Other names N-ETHYL-4-METHOXYBENZENAMINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:104-48-3 SDS

104-48-3Relevant articles and documents

Facile rearrangement of O-silylated oximes on reduction with boron trifluoride/borane

Ortiz-Marciales, Margarita,Rivera, Luis D.,De Jesus, Melvin,Espinosa, Sandraliz,Benjamin, Josue A.,Casanova, Orlando E.,Figueroa, Irving G.,Rodriguez, Sheila,Correa, Wilbert

, p. 10132 - 10134 (2005)

Aromatic O-triisopropylsilyl ketoximes were efficiently rearranged to cyclic and acyclic aniline derivatives on reduction with BF3- ethearate /borane. The bulk of the substituents on the silicon atom, the size of the aliphatic ring, and the presence of alkoxy substituents on the aryl group all play an important role in the aniline.

Dual behavior of iodine species in condensation of anilines and vinyl ethers affording 2-methylquinolines

Le, Song Thi,Yasuoka, Chisa,Asahara, Haruyasu,Nishiwaki, Nagatoshi

, (2016)

A metal-free, mild and efficient method for the synthesis of 2-methylquinolines was successfully developed by condensation of anilines with vinyl ethers in the presence of catalytic amount of iodine. Modification of both pyridine and benzene moieties was easily achieved by changing only the vinyl ether and aniline. In this reaction, the iodine species was revealed to show dual behavior; molecular iodine serves as an oxidant, while its reduced form, hydrogen iodide, activates the vinyl ether. The redox reaction between these iodine species enables the use of a catalytic amount of iodine in this synthetic method.

C-selective and diastereoselective alkyl addition to β,γ-alkynyl-α-imino esters with zinc(II)ate complexes

Hatano, Manabu,Yamashita, Kenji,Mizuno, Mai,Ito, Orie,Ishihara, Kazuaki

, p. 2707 - 2711 (2015)

Since umpolung α-imino esters contain three electrophilic centers, regioselective alkyl addition with traditional organometallic reagents has been a serious problem in the practical synthesis of versatile chiral α-amino acid derivatives. An unusual C-alkyl addition to α-imino esters using a Grignard reagent (RMgX)-derived zinc(II)ate was developed. Zinc(II)ate complexes consist of a Lewis acidic [MgX]+moiety, a nucleophilic [R3Zn]- moiety, and 2[MgX2]. Therefore, the ionically separated [R3Zn]- selectively attacks the imino carbon atom, which is most strongly activated by chelation of [MgX]+. In particular, chiral β,γ-alkynyl-α-imino esters can strongly promote highly regio- and diastereoselective C-alkylation because of structural considerations, and the corresponding optically active α-quaternary amino acid derivatives are obtained within 5 minutes in high to excellent yields.

Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex

Bera, Jitendra K.,Pandey, Pragati

supporting information, p. 9204 - 9207 (2021/09/20)

A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.

Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy

Zhao, Chenxi,Tang, Chu,Li, Changhao,Ning, Wentao,Hu, Zhiye,Xin, Lilan,Zhou, Hai-Bing,Huang, Jian

, (2021/05/10)

Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.

NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds

Chen, Wei,Liu, Sicheng,Liu, Tingting,Majeed, Irfan,Ye, Xiaojing,Zeng, Zhuo,Zhang, Yuqi,Zhu, Yulin

supporting information, p. 8566 - 8571 (2021/10/20)

Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.

Highly Active Ni Nanoparticles on N-doped Mesoporous Carbon with Tunable Selectivity for the One-Pot Transfer Hydroalkylation of Nitroarenes with EtOH in the Absence of H2

Tao, Yuewen,Nie, Yunqing,Hu, Haitao,Wang, Ke,Chen, Yi,Nie, Renfeng,Wang, Jianshe,Lu, Tianliang,Zhang, Yongsheng,Xu, Chunbao Charles

, p. 4243 - 4250 (2021/08/20)

Cost-effective and environmentally friendly conversion of nitroarenes into value-added products is desirable but still challenging. In this work, highly dispersed Ni nanoparticles (NPs) supported on N-doped mesoporous carbon (Ni/NC-x) were synthesized via novel ion exchange-pyrolysis strategy. Their catalytic performance was investigated for one-pot transfer hydroalkylation of nitrobenzene (NB) with EtOH in absence of H2. Interestingly, the catalytic performance could be easily manipulated by tuning the morphology and electronic state of Ni NPs via varying the pyrolysis temperature. It was found that the Ni/NC-650 achieved 100 % nitrobenzene conversion and approx. 90 % selectivity of N,N-diethyl aniline at 240 °C for 5 h, more active than those of homogeneous catalysts or supported Ni catalysts prepared by impregnation (Ni/NC-650-IM, Ni/SiO2). This can be ascribed to the higher dispersion and better reducibility as well as richer surface basicity of the catalyst. More interestingly, the Ni/NC-650 catalyst achieved complete conversion of various nitroarenes, yielding imines, secondary amines, or tertiary amines selectively by simply controlling the reaction temperature at 180, 200 and 240 °C, respectively. The one-pot hydrogen-free process with non-noble metal catalysts, as demonstrated in this work, shows great promise for selective conversion of nitroarenes with ethanol to various anilines at industrial scale, from an economic, environmental, and safety viewpoint.

A highly efficient Co-based catalyst fabricated by coordination-assisted impregnation strategy towards tandem catalytic functionalization of nitroarenes with various alcohols

Li, Guangming,Li, Jingfang,Li, Weizuo,Li, Xuewei,Li, Zhibin,Mao, Guijie,She, Wei,Wang, Jing

, p. 462 - 474 (2021/11/11)

A well-defined hexamethylenetetramine (abbreviated as HMTA) based two-dimensional (2D) MOFs metalloligand (termed Zn-HMTA), with free uncoordinated tertiary amine groups, has been synthesized via solution diffusion method for the first time. The crystal structure of 2D Zn-HMTA metalloligand was determined by the single crystal X-ray diffraction (SCXRD). The SCXRD and X-ray photoelectron spectroscopy (XPS) analyses have revealed that the 2D Zn-HMTA metalloligand is rich in- free tertiary amine groups, which are of strong coordination ability to transition metal ions (e.g. Ni2+, Co2+, Zn2+, Cu2+). As a result, a 2D bimetallic Co@Zn-HMTA MOFs was synthesized via coordination-assisted impregnation (CAI) strategy attributed to the unique feature of strong coordinated ability of free tertiary amine groups. Furthermore, a series of self-supported Co-ZnO-CN nanocatalysts were afforded upon the as-synthesized Co@Zn-HMTA MOFs served as a self-sacrificial template for pyrolysis at different temperatures. The optimized catalyst (termed as Co-ZnO@CN-CAI) demonstrated the excellent catalytic performance for hydrogenation-alkylation tandem reaction in comparison with the classic ZnO@CN composite (derived from Zn-HMTA MOFs) supported metallic Co catalyst (Co-ZnO@CN-IWI) prepared by incipient wetness impregnation method. Moreover, the kinetic study was also performed to confirm that the alkylation is the rate-determining step in the hydrogenation-alkylation tandem reaction. The origin of enhanced catalytic performance of Co-ZnO@CN-CAI and the role of Co@Zn-HMTA MOFs precursor have been explored by way of various characterizations, e.g. HADDF-STEM-EDS, SEM-EDS, 13C MAS NMR, XRD, Raman and XPS, etc. It is anticipated that the prepared low-cost and easily prepared 2D Zn-HMTA metalloligand will become a general template for synthesis of highly self-supported catalysts with coordination-assisted impregnation strategy (CAI) for various catalytic reactions.

Selective Pd-catalyzed monoarylation of small primary alkyl amines through backbone-modification in ylide-functionalized phosphines (YPhos)

Rodstein, Ilja,Prendes, Daniel Sowa,Wickert, Leon,Paa?en, Maurice,Gessner, Viktoria H.

, p. 14674 - 14683 (2020/12/29)

Ylide-substituted phosphines have been shown to be excellent ligands for C-N coupling reactions under mild reaction conditions. Here we report studies on the impact of the steric demand of the substituent in the ylide-backbone on the catalytic activity. Two new YPhos ligands with bulky ortho-tolyl (pinkYPhos) and mesityl (mesYPhos) substituents were synthesized, which are slightly more sterically demanding than their phenyl analogue but considerably less flexible. This change in the ligand design leads to higher selectivities and yields in the arylation of small primary amines compared to previously reported YPhos ligands. Even MeNH2 and EtNH2 could be coupled at room temperature with a series of aryl chlorides in high yields.

Diethylsilane as a Powerful Reagent in Au Nanoparticle-Catalyzed Reductive Transformations

Louka, Anastasia,Kidonakis, Marios,Saridakis, Iakovos,Zantioti-Chatzouda, Elisavet-Maria,Stratakis, Manolis

, p. 3508 - 3514 (2020/06/02)

Diethylsilane (Et2SiH2), a simple and readily available dihydrosilane, that exhibits superior reactivity, as compared to monohydrosilanes, in a series of reductive transformations catalyzed by recyclable and reusable Au nanoparticles (1 mol-%) supported on TiO2. It reduces aldehydes or ketones almost instantaneously at ambient conditions. It can be used in a one pot rapid reductive amination procedure, in which premixing of aldehyde and amine is required prior to the addition of the reducing agent and the catalyst, even in a protic solvent. An unprecedented method for the synthesis of N-arylisoindolines is also shown in the reductive amination between o-phthalaldehyde and anilines. In this transformation, it is proposed that the intermediate N,2-diphenylisoindolin-1-imines are reduced stepwise to the isoindolines. Finally, Et2SiH2 readily reduces amides into amines in excellent yields and shorter reaction times relative to previously known analogous nano Au(0)-catalyzed protocols.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 104-48-3