Welcome to LookChem.com Sign In|Join Free

CAS

  • or

104-48-3

Post Buying Request

104-48-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

104-48-3 Usage

General Description

Benzenamine, N-ethyl-4-methoxy- is a chemical compound with the molecular formula C9H13NO and a molar mass of 151.21 g/mol. It is also known by its common name, N-ethyl-4-methoxyaniline. This chemical is used in the production of various industrial products, including dyes, pigments, and pharmaceuticals. It is a clear, colorless to pale yellow liquid with a slightly sweet odor, and it is insoluble in water but soluble in organic solvents. N-ethyl-4-methoxyaniline is considered to be a hazardous chemical and should be handled and stored with caution due to its potential health and environmental risks.

Check Digit Verification of cas no

The CAS Registry Mumber 104-48-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 4 respectively; the second part has 2 digits, 4 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 104-48:
(5*1)+(4*0)+(3*4)+(2*4)+(1*8)=33
33 % 10 = 3
So 104-48-3 is a valid CAS Registry Number.

104-48-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-methoxyphenylethylamine

1.2 Other means of identification

Product number -
Other names N-ETHYL-4-METHOXYBENZENAMINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:104-48-3 SDS

104-48-3Relevant articles and documents

Facile rearrangement of O-silylated oximes on reduction with boron trifluoride/borane

Ortiz-Marciales, Margarita,Rivera, Luis D.,De Jesus, Melvin,Espinosa, Sandraliz,Benjamin, Josue A.,Casanova, Orlando E.,Figueroa, Irving G.,Rodriguez, Sheila,Correa, Wilbert

, p. 10132 - 10134 (2005)

Aromatic O-triisopropylsilyl ketoximes were efficiently rearranged to cyclic and acyclic aniline derivatives on reduction with BF3- ethearate /borane. The bulk of the substituents on the silicon atom, the size of the aliphatic ring, and the presence of alkoxy substituents on the aryl group all play an important role in the aniline.

C-selective and diastereoselective alkyl addition to β,γ-alkynyl-α-imino esters with zinc(II)ate complexes

Hatano, Manabu,Yamashita, Kenji,Mizuno, Mai,Ito, Orie,Ishihara, Kazuaki

, p. 2707 - 2711 (2015)

Since umpolung α-imino esters contain three electrophilic centers, regioselective alkyl addition with traditional organometallic reagents has been a serious problem in the practical synthesis of versatile chiral α-amino acid derivatives. An unusual C-alkyl addition to α-imino esters using a Grignard reagent (RMgX)-derived zinc(II)ate was developed. Zinc(II)ate complexes consist of a Lewis acidic [MgX]+moiety, a nucleophilic [R3Zn]- moiety, and 2[MgX2]. Therefore, the ionically separated [R3Zn]- selectively attacks the imino carbon atom, which is most strongly activated by chelation of [MgX]+. In particular, chiral β,γ-alkynyl-α-imino esters can strongly promote highly regio- and diastereoselective C-alkylation because of structural considerations, and the corresponding optically active α-quaternary amino acid derivatives are obtained within 5 minutes in high to excellent yields.

Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex

Bera, Jitendra K.,Pandey, Pragati

supporting information, p. 9204 - 9207 (2021/09/20)

A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.

NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds

Chen, Wei,Liu, Sicheng,Liu, Tingting,Majeed, Irfan,Ye, Xiaojing,Zeng, Zhuo,Zhang, Yuqi,Zhu, Yulin

supporting information, p. 8566 - 8571 (2021/10/20)

Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.

A highly efficient Co-based catalyst fabricated by coordination-assisted impregnation strategy towards tandem catalytic functionalization of nitroarenes with various alcohols

Li, Guangming,Li, Jingfang,Li, Weizuo,Li, Xuewei,Li, Zhibin,Mao, Guijie,She, Wei,Wang, Jing

, p. 462 - 474 (2021/11/11)

A well-defined hexamethylenetetramine (abbreviated as HMTA) based two-dimensional (2D) MOFs metalloligand (termed Zn-HMTA), with free uncoordinated tertiary amine groups, has been synthesized via solution diffusion method for the first time. The crystal structure of 2D Zn-HMTA metalloligand was determined by the single crystal X-ray diffraction (SCXRD). The SCXRD and X-ray photoelectron spectroscopy (XPS) analyses have revealed that the 2D Zn-HMTA metalloligand is rich in- free tertiary amine groups, which are of strong coordination ability to transition metal ions (e.g. Ni2+, Co2+, Zn2+, Cu2+). As a result, a 2D bimetallic Co@Zn-HMTA MOFs was synthesized via coordination-assisted impregnation (CAI) strategy attributed to the unique feature of strong coordinated ability of free tertiary amine groups. Furthermore, a series of self-supported Co-ZnO-CN nanocatalysts were afforded upon the as-synthesized Co@Zn-HMTA MOFs served as a self-sacrificial template for pyrolysis at different temperatures. The optimized catalyst (termed as Co-ZnO@CN-CAI) demonstrated the excellent catalytic performance for hydrogenation-alkylation tandem reaction in comparison with the classic ZnO@CN composite (derived from Zn-HMTA MOFs) supported metallic Co catalyst (Co-ZnO@CN-IWI) prepared by incipient wetness impregnation method. Moreover, the kinetic study was also performed to confirm that the alkylation is the rate-determining step in the hydrogenation-alkylation tandem reaction. The origin of enhanced catalytic performance of Co-ZnO@CN-CAI and the role of Co@Zn-HMTA MOFs precursor have been explored by way of various characterizations, e.g. HADDF-STEM-EDS, SEM-EDS, 13C MAS NMR, XRD, Raman and XPS, etc. It is anticipated that the prepared low-cost and easily prepared 2D Zn-HMTA metalloligand will become a general template for synthesis of highly self-supported catalysts with coordination-assisted impregnation strategy (CAI) for various catalytic reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 104-48-3