Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1070-75-3

Post Buying Request

1070-75-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1070-75-3 Usage

Chemical Properties

crystal(s) white powder(s); decomposes in water, evolves acetylene when dissolved in acid [HAW93]

Preparation

Lithium carbide, Li2C2, may be prepared by the direct combination of lithium and carbon at about 1000°C or by the reaction of lithium metal with acetylene in liquid ammonia. The latter process first yields lithium acetylide, LiC=CH, which decomposes to lithium carbide. The conversion to the carbide is incomplete, however . A convenient laboratory preparation of lithium carbide may be carried out by bubbling acetylene into a solution of n-butyllithium in hexane. The precipitated carbide may be filtered from the reaction mixture, washed, and dried. Lithium carbide is ionic and yields acetylene on hydrolysis.

Check Digit Verification of cas no

The CAS Registry Mumber 1070-75-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,0,7 and 0 respectively; the second part has 2 digits, 7 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 1070-75:
(6*1)+(5*0)+(4*7)+(3*0)+(2*7)+(1*5)=53
53 % 10 = 3
So 1070-75-3 is a valid CAS Registry Number.
InChI:InChI=1/C2.2Li/c1-2;;/q-2;2*+1

1070-75-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Dilithium acetylide

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1070-75-3 SDS

1070-75-3Synthetic route

n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

N-(α-methylbenzyl)pentylamine
149529-74-8

N-(α-methylbenzyl)pentylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: n-butyllithium; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine at 20℃;
Stage #2: With methanol
A 80%
B n/a
thiophene
188290-36-0

thiophene

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

N,N'-(thiophene-2,5-diylbis(methylene))bis(α-methylbenzylamine)

N,N'-(thiophene-2,5-diylbis(methylene))bis(α-methylbenzylamine)

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: thiophene; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine With lithium diisopropyl amide In diethyl ether at 0 - 20℃;
Stage #2: With methanol
A 78%
B n/a
2-Methylthiophene
554-14-3

2-Methylthiophene

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

N-(α-methylbenzyl)(5-methylthiophen-2-yl)methylamine

N-(α-methylbenzyl)(5-methylthiophen-2-yl)methylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: 2-Methylthiophene; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine With lithium diisopropyl amide In diethyl ether at 0 - 20℃;
Stage #2: With methanol
A 77%
B n/a
n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

N-(α-methylbenzyl)-3-(trimethylsilyl)-2-propynylamine

N-(α-methylbenzyl)-3-(trimethylsilyl)-2-propynylamine

A

N-(α-methylbenzyl)pentylamine
149529-74-8

N-(α-methylbenzyl)pentylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: n-butyllithium; N-(α-methylbenzyl)-3-(trimethylsilyl)-2-propynylamine at 20℃;
Stage #2: With methanol
A 71%
B n/a
n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

N-(prop-2-yn-1-yl)cyclohexanamine
18292-76-7

N-(prop-2-yn-1-yl)cyclohexanamine

A

N,N-cyclohexyl-n-pentylamine
35152-42-2

N,N-cyclohexyl-n-pentylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: n-butyllithium; N-(prop-2-yn-1-yl)cyclohexanamine at 20℃;
Stage #2: With methanol
A 70%
B n/a
tetrachloromethane
56-23-5

tetrachloromethane

lithium
7439-93-2

lithium

A

CLi4

CLi4

B

ethenetetrayl-tetrakis-lithium
38827-81-5

ethenetetrayl-tetrakis-lithium

C

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
In neat (no solvent) reaction of an excess of gaseous Li with gaseous CCl4 at 800-1000°C (high vac.);;A 10-18
B 61%
C 20%
furan
110-00-9

furan

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

N,N'-(furan-2,5-diylbis(methylene))bis(α-methylbenzylamine)

N,N'-(furan-2,5-diylbis(methylene))bis(α-methylbenzylamine)

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: furan; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine With lithium diisopropyl amide In diethyl ether at 0 - 20℃;
Stage #2: With methanol
A 58%
B n/a
N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

tert.-butyl lithium
594-19-4

tert.-butyl lithium

A

N-(α-methylbenzyl)-2,2-dimethylpropylamine

N-(α-methylbenzyl)-2,2-dimethylpropylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine; tert.-butyl lithium at 20℃;
Stage #2: With methanol
A 50%
B n/a
N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

phenyllithium
591-51-5

phenyllithium

A

N-benzyl-1-phenylethylamine
3193-62-2, 17480-69-2, 19302-20-6, 38235-77-7

N-benzyl-1-phenylethylamine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine; phenyllithium at 20℃;
Stage #2: With methanol
A 39%
B n/a
2-thienyl lithium
2786-07-4

2-thienyl lithium

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

(RS)-N-(thiophen-2-ylmethyl)-N-(α-methylbenzyl)amine

(RS)-N-(thiophen-2-ylmethyl)-N-(α-methylbenzyl)amine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: 2-thienyl lithium; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine at 20℃;
Stage #2: With methanol
A 38%
B n/a
2-lithiofuran
2786-02-9

2-lithiofuran

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine
56862-34-1

N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine

A

(RS)-N-(furan-2-ylmethyl)-N-(α-methylbenzyl)amine
161119-98-8

(RS)-N-(furan-2-ylmethyl)-N-(α-methylbenzyl)amine

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Stage #1: 2-lithiofuran; N-(1-phenylethyl)-N-(prop-2-yn-1-yl)amine With lithium diisopropyl amide In diethyl ether at 0 - 20℃;
Stage #2: With methanol
A 29%
B n/a
methyllithium
917-54-4

methyllithium

A

methane
34557-54-5

methane

B

dilithiomethane
21473-62-1

dilithiomethane

C

propadienetetrayl-tetrakis-lithium
69815-14-1

propadienetetrayl-tetrakis-lithium

D

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
at 223 - 226℃; Yield given. Yields of byproduct given;
cis-1,2-Dilithioethylen
65801-58-3, 75620-60-9, 171562-29-1

cis-1,2-Dilithioethylen

A

vinyllithium
917-57-7

vinyllithium

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Title compound not separated from byproducts;
trans-1,2-Dilithioethylen
65801-58-3, 75620-60-9, 171562-29-1

trans-1,2-Dilithioethylen

A

vinyllithium
917-57-7

vinyllithium

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
Title compound not separated from byproducts;
lithium acetylide
70277-75-7

lithium acetylide

A

vinyllithium
917-57-7

vinyllithium

B

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
With dilithiumethylene Title compound not separated from byproducts;
Trichloroethylene
79-01-6

Trichloroethylene

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
With n-butyllithium In tetrahydrofuran; diethyl ether for 2h; Ambient temperature;
With n-butyllithium In tetrahydrofuran
acetylene
74-86-2

acetylene

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
With n-butyllithium In hexane at -10℃; for 0.75h; Yield given;
graphite

graphite

lithium chloride

lithium chloride

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
In melt Electrolysis; graphite electrodes, graphite dissoln. in molten Li (temp.>600°C);
graphite

graphite

lithium
7439-93-2

lithium

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
In neat (no solvent, solid phase) heated at 900°C for 12 h in Nb ampoule;
n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

acetylene
74-86-2

acetylene

dilithium acetylide
1070-75-3

dilithium acetylide

Conditions
ConditionsYield
In hexane inert atmosphere, diln. of soln. of n-BuLi with freshly distilled hexane, cooling to -15°C, passing of HCCH through the soln. at a temp. below -10°C, further bubbling of HCCH through the soln. (0.5 h), warming to room temp., reflux (2 h); filtration, reduction of volume (vacuum), washing (hexane), filtration, drying (60°C, 0.5 Torr), yield 82%;
niobium

niobium

niobium pentachloride
10026-12-7

niobium pentachloride

dilithium acetylide
1070-75-3

dilithium acetylide

Li(1+)*Nb6Cl19(1-)=LiNb6Cl19

Li(1+)*Nb6Cl19(1-)=LiNb6Cl19

Conditions
ConditionsYield
In melt byproducts: LiCl, NbCl4; compds. melted in quartz-glass ampoule at 530°C for 15 h; slowly (36 h) cooled to 300°C, washed with i-PrOH;90%
1,5-dichlorodecamethylpentasilane
5586-42-5

1,5-dichlorodecamethylpentasilane

dilithium acetylide
1070-75-3

dilithium acetylide

3,3,4,4,5,5,6,6,7,7-decamethyl-3,4,5,6,7-pentasilacycloheptyne
129415-88-9

3,3,4,4,5,5,6,6,7,7-decamethyl-3,4,5,6,7-pentasilacycloheptyne

Conditions
ConditionsYield
80%
dilithium acetylide
1070-75-3

dilithium acetylide

(diethylamino)dimethylsilyl-triflat
155166-24-8

(diethylamino)dimethylsilyl-triflat

Bis<(diethylamino)dimethylsilyl>ethin

Bis<(diethylamino)dimethylsilyl>ethin

Conditions
ConditionsYield
In diethyl ether for 0.5h; Ambient temperature;78%
trimethyltin(IV)chloride
1066-45-1

trimethyltin(IV)chloride

dilithium acetylide
1070-75-3

dilithium acetylide

bis(trimethyltin)acetylene
2117-50-2

bis(trimethyltin)acetylene

Conditions
ConditionsYield
In pentane byproducts: LiCl; inert atmosphere, addn. of soln. of (CH3)3SnCl to suspension of Li2C2 at-25°C (40 min), warming to room temp., reflux (1 h); filtration from LiCl, concn., recrystn. (pentane, -78°C), drying (40°C, 5 Torr);76%
dilithium acetylide
1070-75-3

dilithium acetylide

6-hepten-1-yl iodide
107175-49-5

6-hepten-1-yl iodide

1,15-hexadecadien-8-yne
188525-80-6

1,15-hexadecadien-8-yne

Conditions
ConditionsYield
In tetrahydrofuran; N,N,N,N,N,N-hexamethylphosphoric triamide rt, 16 h; reflux, 2 h;72%
3-(tert-butyldimethylsilyloxy)propyl bromide
89031-84-5

3-(tert-butyldimethylsilyloxy)propyl bromide

dilithium acetylide
1070-75-3

dilithium acetylide

1-(tert-butyldimethylsilyloxy)-4-pentyne
61362-77-4

1-(tert-butyldimethylsilyloxy)-4-pentyne

Conditions
ConditionsYield
In dimethyl sulfoxide at 0℃;68.5%
POC6H2-2,4,6-t-Bu3
796-62-3

POC6H2-2,4,6-t-Bu3

dilithium acetylide
1070-75-3

dilithium acetylide

C38H58Cl2O2P2

C38H58Cl2O2P2

Conditions
ConditionsYield
In diethyl ether at 25℃; for 3h;66%
1,4-dichloropermethyltetrasilane
754-75-6

1,4-dichloropermethyltetrasilane

dilithium acetylide
1070-75-3

dilithium acetylide

octamethyltetrasilacyclohexyne
138542-16-2

octamethyltetrasilacyclohexyne

Conditions
ConditionsYield
65%
trimethyltin bromide
1066-44-0

trimethyltin bromide

dilithium acetylide
1070-75-3

dilithium acetylide

bis(trimethyltin)acetylene
2117-50-2

bis(trimethyltin)acetylene

Conditions
ConditionsYield
In pentane Ar atmosphere, addn. of soln. of (CH3)3SnBr to suspension of Li2C2 at -25°C (40 min), warming to room temp., reflux (1 h); filtration from LiCl, concn., recrystn. (pentane, -78°C), drying (40°C, 5 Torr);64%
dilithium acetylide
1070-75-3

dilithium acetylide

1,2-bis<2-(chlorodimethylsilyl)ethyl>-1,1,2,2-tetramethyldisilane
172538-40-8

1,2-bis<2-(chlorodimethylsilyl)ethyl>-1,1,2,2-tetramethyldisilane

3,3,6,6,7,7,10,10-octamethyl-3,6,7,10-tetrasilacyclodecyne
172538-42-0

3,3,6,6,7,7,10,10-octamethyl-3,6,7,10-tetrasilacyclodecyne

Conditions
ConditionsYield
In tetrahydrofuran Ambient temperature;62.2%
tetra(μ-N,N'-2-anilinopyridinate)diruthenium(II,III) chloride

tetra(μ-N,N'-2-anilinopyridinate)diruthenium(II,III) chloride

dilithium acetylide
1070-75-3

dilithium acetylide

bis((tetraμ-N,N'-2-anilinopyridinate)diruthenium(II,III))ethynediyl

bis((tetraμ-N,N'-2-anilinopyridinate)diruthenium(II,III))ethynediyl

Conditions
ConditionsYield
In tetrahydrofuran (Ar), at room temp. for 12 h; washed (brine), evapd., rinzed (CH2Cl2), recrystd.(THF), elem. anal.;42%
Ru2(2-anilinopyridinate)4Cl

Ru2(2-anilinopyridinate)4Cl

dilithium acetylide
1070-75-3

dilithium acetylide

bis((tetraμ-N,N'-2-anilinopyridinate)diruthenium(II,III))ethynediyl

bis((tetraμ-N,N'-2-anilinopyridinate)diruthenium(II,III))ethynediyl

Conditions
ConditionsYield
In tetrahydrofuran under Ar atm. using Schlenk techniques; LiCCLi transferred to THF soln. of Ru complex; stirred at room temp. overnight; to the ice-chilled soln. added satd. aq. soln. of NaCl; org. layer sepd.; washed aq. satd. soln. of NaCl; dried (Na2SO4); solvent removed; ppt. collected by filtration; washed (CH2Cl2); residue dried (vac.) overnight; elem. anal.;42%
1,2-bis[2-(chlorodimethylgermyl)ethyl]-1,1,2,2-tetramethyldigermane
172538-41-9

1,2-bis[2-(chlorodimethylgermyl)ethyl]-1,1,2,2-tetramethyldigermane

dilithium acetylide
1070-75-3

dilithium acetylide

3,3,6,6,7,7,10,10-octamethyl-3,6,7,10-tetragermacyclodecyne
172538-43-1

3,3,6,6,7,7,10,10-octamethyl-3,6,7,10-tetragermacyclodecyne

Conditions
ConditionsYield
In tetrahydrofuran mixing of solns. of Li salt and Ge compound (room temp., 5 h), stirring (overnight); Kugelrohr distillation;23%
bis(cyclopentadienyl)titanium dichloride
1271-19-8

bis(cyclopentadienyl)titanium dichloride

dilithium acetylide
1070-75-3

dilithium acetylide

trimethylphosphane
594-09-2

trimethylphosphane

μ-(η1:η1-ethendiylidnene)-bis{bis(η5-cyclopentadienyl)(trimethylphosphane)titanium}
142895-81-6

μ-(η1:η1-ethendiylidnene)-bis{bis(η5-cyclopentadienyl)(trimethylphosphane)titanium}

Conditions
ConditionsYield
With Mg In tetrahydrofuran Ar atmosphere; addn. of Li2C2 in THF to soln. of Ti compd. in THF (20°C), stirring (20°C, 12 h), addn. of PMe3 and Mg, warming (27°C), stirring (24 h); removal of solvent (0.5 Torr), addn. of toluene, filtration, removal of toluene (0.5 Torr), addn. of THF, standing (2 d), sepn., drying (Ar stream); not pure;20%
V(C6H2(CH3)3)3C4H8O*0.25C4H8O

V(C6H2(CH3)3)3C4H8O*0.25C4H8O

dilithium acetylide
1070-75-3

dilithium acetylide

Dilithium-μ-ethindiyl-hexamesityl-divanadat-terahydrofuran(1/8)

Dilithium-μ-ethindiyl-hexamesityl-divanadat-terahydrofuran(1/8)

Conditions
ConditionsYield
With THF In tetrahydrofuran 30 min stirring, under Ar; concg., pptn. with diethylether, washing with ether, drying in vac.; elem.anal.;18%
trimethyltin(IV)chloride
1066-45-1

trimethyltin(IV)chloride

dilithium acetylide
1070-75-3

dilithium acetylide

acetylene
74-86-2

acetylene

bis(trimethyltin)acetylene
2117-50-2

bis(trimethyltin)acetylene

Conditions
ConditionsYield
In hexane excess of C2H2;10%
chlorotriethylstannane
994-31-0

chlorotriethylstannane

dilithium acetylide
1070-75-3

dilithium acetylide

acetylene
74-86-2

acetylene

A

triethylethynylstannane
994-39-8

triethylethynylstannane

B

bis(triethylstannyl)ethyne
994-99-0

bis(triethylstannyl)ethyne

Conditions
ConditionsYield
In hexane excess of C2H2;A 10%
B n/a
trifluoromethylsulfonic anhydride
358-23-6

trifluoromethylsulfonic anhydride

dilithium acetylide
1070-75-3

dilithium acetylide

cyclopenta-1,3-diene
542-92-7

cyclopenta-1,3-diene

C18H12F6O4S2

C18H12F6O4S2

Conditions
ConditionsYield
In diethyl ether at -20℃;1.3%
tripropylborane
1116-61-6

tripropylborane

dilithium acetylide
1070-75-3

dilithium acetylide

4,5-dipropyl-4-octene
57984-32-4

4,5-dipropyl-4-octene

Conditions
ConditionsYield
(i) , (ii) BrCN, NaOMe, (iii) EtCO2H; Multistep reaction;

1070-75-3Relevant articles and documents

Juza et al.

, p. 252 (1967)

-

Uhlig, Wolfram

, p. 281 - 289 (1997)

Novel poly(silylenealkynes), poly(silylenemethylenes), and poly(silylenephenylenes) with a regular alternating structure in the polymer backbone have been prepared by reductive coupling of special substituted silyl triflates or chlorides with potassium - graphite or by ring-opening polymerization of 1,3-disilacyclobutanes. The functionalization of these polymers with trifluoromethanesulfonic acid and following reactions with grignard reagents, amines, or lithium tetrahydridoaluminate gave novel polymeric derivatives. The protodesilylation reaction could be controlled by using different leaving groups (phenyl-, p-tolyl-, or p-anisyl-groups). In this way, the regular structure of the polymer backbone could be kept during the funtionalization reactions. Novel network-polymers have been obtained by intermolecular hydrosilylation reactions of the modified polymer derivatives. The polymers were characterized by NMR spectroscopy (29Si, 13C, 1H).

Metal Acetylide Elimination: The Key Step in the Cascade Decomposition and Transformation of Metalated Propargylamines

Flynn, Matthew T.,Blair, Victoria L.,Andrews, Philip C.

supporting information, p. 1225 - 1228 (2018/04/30)

Metal acetylide elimination facilitates a novel one-pot cascade metalation and elimination/addition route to a series of unsymmetrical secondary amines from the reaction of secondary propargylamines with organometallic reagents. Spectroscopic evidence suggests a dimetalated amido intermediate rather than an allene.

Novel organoborane Lewis acids via selective boron-tin exchange processes - Steric constraints to electrophilic initiation by the boron halide

Eisch, John J.,Kotowicz, Boguslaw W.

, p. 761 - 769 (2007/10/03)

With the purpose of preparing novel mono- and bidentate organoboron Lewis acids, the scope and limitations of synthesizing the requisite organoboranes by the boron-tin exchange between a boron halide and the appropriate organostannane have been examined in detail. The following organotin derivatives have been obtained either from the corresponding RMgBr or RLi reagent and MenSnCl4-n or from a Barbier procedure using the organic halide, Me3SnCl and magnesium metal: 1,2-bis(trimethylstannyl)ethyne, o-, m-, and p-bis(trimethylstannyl)benzenes, α,o-bis(trimethylstannyl)toluene, α,α-bis(trimethylstannyl)-o-xylene, and 2,2-dimethyl-2-stannaindane. The individual interaction of the 1,2-bis(trimethylstannyl)ethyne and the isomeric bis(trimethylstannyl)benzenes with Et2BBr produced the corresponding bis(diethylboryl)-derivatives. By contrast, with Et2BCl the α,o-bis(trimethylstannyl)toluene gave only o-diethylboryl-α-trimethylstannyltoluene and with BCl3 the α,α′-bis(trimethylstannyl)-o-xylene formed only α,α′-bis-(chlorodimethylstannyl)-o-xylene. Furthermore, in the attempted double boron-tin exchange between o-bis(trimethylstannyl)benzene and BCl3, an unprecedented rearrangement of the 1-(dichloroboryl)-2-(trimethylstannyl)benzene intermediate into its 1-[chloro(methyl)boryl]-2-(chlorodimethylstannyl) isomer was observed. Likewise, o-bis(trimethylstannyl)benzene with PhBCl2 produced by a similar rearrangement 1-[methyl(phenyl)boryl]-2-(chloro-dimethylstannyl)benzene. The thermolysis of such boranes led variously to definite dimers or ill-defined oligomers. Preliminary studies of the properties of these organoboranes have identified the heightened Lewis acidity of 1,2-bis(diethylboryl)ethyne and the π-electron delocalization involving the 2pΖ-boron orbitals in the 9,10-dihydro-9,10-diboraanthracene system. Finally, an electronic mechanism for the boron-tin exchange has been developed to account for the selectivity of the boron halide's attack at unsaturated carbon-tin bonds.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1070-75-3