1092277-16-1Relevant articles and documents
Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4H-Chromen-4-one Derivatives
Cao, Xiao,Liu, Fang,Liu, Liwei,Liu, Tingting,Peng, Feng,Wang, Qifan,Xie, Chengwei,Xue, Wei,Yang, Jinsong
, p. 11085 - 11094 (2021/10/01)
Various 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives were conceived. The title compounds demonstrated striking inhibitory effects againstXac,Psa, andXoo. EC50data exhibited that A8 (19.7 μg/mL) had better antibacterial activity againstXoothan myricetin, BT, and TC. Simultaneously, the mechanism of action of A8 had been verified by SEM. The results of anti-tobacco mosaic virus indicated that A9 had the bestin vivoantiviral effect compared with ningnanmycin. From the data of MST, it could be seen that A9 (0.003 ± 0.001 μmol/L) exhibited a strong binding capacity, which was far superior to ningnanmycin (2.726 ± 1.301 μmol/L). This study shows that the 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives may become agricultural drugs with great potential.
Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety
Xu, Wei-Ming,Han, Fei-Fei,He, Ming,Hu, De-Yu,He, Jiang,Yang, Song,Song, Bao-An
, p. 1036 - 1041 (2012/06/04)
A series of new sulfone compounds containing the 1,3,4-oxadiazole moiety were designed and synthesized. Their structures were identified by 1H and 13C nuclear magnetic resonance and elemental analyses. Antibacterial bioassays indicated that most compounds exhibited promising in vitro antibacterial bioactivities against tobacco bacterial wilt at 200 μg/mL. The relationship between structure and antibacterial activity was also discussed. Among the title compounds, 5′c, 5′h, 5′i, and 5′j could inhibit mycelia growth of Ralstonia solanacearum in vitro by approximately 50% (EC50) at 39.8, 60.3, 47.9, and 32.1 μg/mL, respectively. Among them, compound 5′j was identified as the most promising candidate due to its stronger effect than that of Kocide 3000 [Cu(OH)2] within the same concentration range. Field trials demonstrated that the control effect of compound 5′j against tobacco bacterial wilt was better than that of the commercial bactericide Saisentong. For the first time, the present work demonstrated that sulfone derivatives containing 1,3,4-oxadiazole can be used to develop potential bactericides for plants.