Welcome to LookChem.com Sign In|Join Free

CAS

  • or

113538-22-0

Post Buying Request

113538-22-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • China Largest factory Manufacturer Supply High Quality 4-PHENYLCINNAMALDEHYDE CAS 113538-22-0

    Cas No: 113538-22-0

  • USD $ 1.0-3.0 / Kilogram

  • 1 Kilogram

  • 1 Metric Ton/Day

  • Leader Biochemical Group
  • Contact Supplier

113538-22-0 Usage

Synthesis Reference(s)

The Journal of Organic Chemistry, 38, p. 2254, 1973 DOI: 10.1021/jo00952a038

Check Digit Verification of cas no

The CAS Registry Mumber 113538-22-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,3,5,3 and 8 respectively; the second part has 2 digits, 2 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 113538-22:
(8*1)+(7*1)+(6*3)+(5*5)+(4*3)+(3*8)+(2*2)+(1*2)=100
100 % 10 = 0
So 113538-22-0 is a valid CAS Registry Number.
InChI:InChI=1/C15H12O/c16-12-4-5-13-8-10-15(11-9-13)14-6-2-1-3-7-14/h1-12H/b5-4+

113538-22-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (E)-3-(4-phenylphenyl)prop-2-enal

1.2 Other means of identification

Product number -
Other names 3-([1,1'-Biphenyl]-4-yl)acrylaldehyde

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:113538-22-0 SDS

113538-22-0Relevant articles and documents

Nucleophilic fluoroalkylation of terminal vinyl triflones with SO2CF3 as a removable activating group

Tian, Ping-ping,Xiao, Hong-qing,Wang, Lu,Yu, Yingxin,Huang, Yangen

, p. 1015 - 1018 (2019)

Terminal vinyl triflones served as excellent Michael addition acceptors which readily reacted with difluoromethylene phosphabetaine and di- or mono-fluoroalkyl bromides to afford compounds containing CF2 or CF groups. This fluoroalkylation is c

An efficient Pd@Pro-GO heterogeneous catalyst for the α, β-dehydrogenation of saturated aldehyde and ketones

Pan, Gao-Fei,Wang, Zhe,Chang, Yi-Yuan,Hao, Yue,Wang, Yi-Chen,Xing, Rui-Guang

supporting information, (2021/12/30)

An Efficient Pd@Pro-GO heterogeneous catalyst was developed that can promote the α, β-dehydrogenation of saturated aldehyde and ketones in the yield of 73% ? 92% at mild conditions without extra oxidants and additives. Pd@Pro-GO heterogeneous catalyst was synthesized via two steps: firstly, the Pro-GO was obtained by the esterification reaction between graphene oxide (GO) and N-(tert-Butoxycarbonyl)-L-proline (Boc-Pro-OH), followed by removing the protection group tert-Butoxycarbonyl (Boc), which endowed the proline-functionalized GO with both the lewis acid site (COOH) and the bronsted base site (NH), besides, the pyrrolidine of proline also can form imine with aldehydes to activate these substrates; Second, palladium was dispersed on the proline-functionalized GO (Pro-GO) to obtained heterogeneous catalyst Pd@Pro-GO. Mechanistic studies have shown that the Pd@Pro-GO-catalyzed α,β-dehydrogenation of saturated aldehyde and ketones was realized by an improved heterogeneously catalyzed Saegusa oxidation reaction. Based on the obove characteristics, the Pd@Pro-GO will be widely used in the transition metal catalytic field.

Iron-Catalyzed ?±,?-Dehydrogenation of Carbonyl Compounds

Zhang, Xiao-Wei,Jiang, Guo-Qing,Lei, Shu-Hui,Shan, Xiang-Huan,Qu, Jian-Ping,Kang, Yan-Biao

supporting information, p. 1611 - 1615 (2021/03/03)

An iron-catalyzed α,β-dehydrogenation of carbonyl compounds was developed. A broad spectrum of carbonyls or analogues, such as aldehyde, ketone, lactone, lactam, amine, and alcohol, could be converted to their α,β-unsaturated counterparts in a simple one-step reaction with high yields.

Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π-Acceptor Biphosphoramidite Ligand

Zhao, Jiangui,Zheng, Xueli,Tao, Shaokun,Zhu, Yuxin,Yi, Jiwei,Tang, Songbai,Li, Ruixiang,Chen, Hua,Fu, Haiyan,Yuan, Maolin

supporting information, p. 6067 - 6072 (2021/08/16)

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 113538-22-0