Welcome to LookChem.com Sign In|Join Free

CAS

  • or

126923-26-0

Post Buying Request

126923-26-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

126923-26-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 126923-26-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,6,9,2 and 3 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 126923-26:
(8*1)+(7*2)+(6*6)+(5*9)+(4*2)+(3*3)+(2*2)+(1*6)=130
130 % 10 = 0
So 126923-26-0 is a valid CAS Registry Number.

126923-26-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-2-azido-2-phenylethan-1-ol

1.2 Other means of identification

Product number -
Other names (R)-2-azido-2-phenylethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:126923-26-0 SDS

126923-26-0Relevant articles and documents

Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade

Franssen, Maurice C. R.,Hollmann, Frank,Martínez-Montero, Lía,Paul, Caroline E.,Süss, Philipp,Schallmey, Anett,Tischler, Dirk

, p. 5077 - 5085 (2021/08/16)

Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.

Synthesis of enantiopure 1,2-azido and 1,2-amino alcohols via regio- and stereoselective ring-opening of enantiopure epoxides by sodium azide in hot water

Wang, Hai-Yang,Huang, Kun,De Jesús, Melvin,Espinosa, Sandraliz,Pi?ero-Santiago, Luis E.,Barnes, Charles L.,Ortiz-Marciales, Margarita

, p. 91 - 100 (2016/02/09)

A practical and convenient method for the efficient and regio- and stereoselective ring-opening of enantiopure monosubstituted epoxides by sodium azide under hydrolytic conditions is reported. The ring-opening of enantiopure styryl and pyridyl (S)-epoxides by N3- in hot water takes place preferentially at the internal position with complete inversion of configuration to produce (R)-2-azido ethanols with up to 99% enantio- and regioselectivity, while the (S)-adamantyl oxirane provides mainly the (S)-1-adamantyl-2-azido ethanol in excellent yield. In general, 1,2-amino ethanols were obtained in high yield and excellent enantiopurity by the reduction of the chiral 1,2-azido ethanols with PPh3 in water/THF, and then converted into the Boc or acetamide derivatives.

Asymmetric Schmidt reaction of hydroxyalkyl azides with ketones

Sahasrabudhe, Kiran,Gracias, Vijaya,Furness, Kelly,Smith, Brenton T.,Katz, Christopher E.,Reddy, D. Srinivasa,Aube, Jeffrey

, p. 7914 - 7922 (2007/10/03)

An asymmetric equivalent of the Schmidt reaction permits stereocontrol in ring expansions of symmetrical cyclohexanones. The procedure involves the reaction of chiral 1,2- and 1,3-hydroxyalkyl azides with ketones under acid catalysis; the initial reaction affords an iminium ether that can be subsequently opened with base. A systematic study of this reaction is reported, in which ketone substrates, chiral hydroxyalkyl azides, and reaction conditions are varied. Selectivities as high as ca. 98:2 are possible for the synthesis of substituted caprolactams, with up to 1,7-stereoselection involved in the overall process. The fact that either possible migrating carbon is electronically identical provides an unusual opportunity to study a ring-expansion reaction controlled entirely by stereoelectronic factors. The mechanism of the reaction and the source of its stereoselectivity are also discussed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 126923-26-0