129449-09-8Relevant articles and documents
PROTAC compound for targeted degradation of IDO1, and preparation method and application thereof
-
Paragraph 0024-0026; 0046-0048; 0051, (2020/06/17)
The invention provides a PROTAC compound represented by formula I and used for targeted degradation of IDO1, and a pharmaceutically acceptable salt, a hydrate or a solvate thereof. In the formula I, Xrepresents -CH2 or -C = O, Y represents -CH2 or -C= O, and n is a natural number from 2 to 9. The PROTAC compound for targeted degradation of the IDO1 has efficient activity of targeted degradation of the IDO1 protein.
Ligand-Phospholipid Conjugation: A Versatile Strategy for Developing Long-Acting Ligands That Bind to Membrane Proteins by Restricting the Subcellular Localization of the Ligand
Kawamura, Shuhei,Ito, Yoshihiko,Hirokawa, Takatsugu,Hikiyama, Eriko,Yamada, Shizuo,Shuto, Satoshi
supporting information, p. 4020 - 4029 (2018/05/07)
We hypothesized that if drug localization can be restricted to a particular subcellular domain where their target proteins reside, the drugs could bind to their target proteins without being metabolized and/or excreted, which would significantly extend the half-life of the corresponding drug-target complex. Thus, we designed ligand-phospholipid conjugates in which the ligand is conjugated with a phospholipid through a polyethylene glycol linker to restrict the subcellular localization of the ligand in the vicinity of the lipid bilayer. Here, we present the design, synthesis, pharmacological activity, and binding mode analysis of ligand-phospholipid conjugates with muscarinic acetylcholine receptors as the target proteins. These results demonstrate that ligand-phospholipid conjugation can be a versatile strategy for developing long-acting ligands that bind to membrane proteins in drug discovery.
GALACTOSE DERIVATIVE, DRUG CARRIER AND MEDICINAL COMPOSITION
-
Page/Page column 23, (2010/11/27)
The object of the invention is to provide a novel and useful galactose derivative constituting a drug carrier by which a medicine can be efficiently transferred into the liver, a drug carrier comprising the derivative, and a pharmaceutical composition comprising the carrier and a medicine. The present invention relates to a galactose derivative made up of galactose, a suitable spacer and a certain lipid, a drug carrier comprising the derivative and a cationic lipid, and a pharmaceutical composition comprising the carrier and a medicine (preferably a double strand RNA, a double strand DNA, an oligo nucleic acid) .
Synthesis of a series of oligo(ethylene glycol)-terminated alkanethiol amides designed to address structure and stability of biosensing interfaces
Svedhem,Hollander,Shi,Konradsson,Liedberg,Svensson
, p. 4494 - 4503 (2007/10/03)
A strategy for the synthesis of a series of closely related oligo(ethylene glycol)-terminated alkanethiol amides (principally HS(CH2)mCONH(CH2CH2O) nH; m = 2, 5, 11, 15, n = 1, 2, 4, 6, 8, 10, 12) and analogous esters has been developed. These compounds were made to study the structure and stability of self-assembled monolayers (SAMs) on gold in the prospect of designing new biosensing interfaces. For this purpose, monodisperse heterofunctional oligo(ethylene glycols) with up to 12 units were prepared. Selective monoacylation of the symmetrical tetra- and hexa(ethylene glycol) diols as their mesylates with the use of silver(I) oxide was performed. The synthetic approach was based on carbodiimide couplings of various oligo(ethylene glycol) derivatives to ω-(acetylthio) carboxylic acids via a terminal amino or hydroxyl function. SAM structures on gold were studied with respect to thickness, wettability (water contact angles ~30°), and conformation. A good fit was obtained for the relation between monolayer thickness (d) and the number of units in the oligo(ethylene glycol) chain (n): d = 2.8n + 21.8 (A). Interestingly, the corresponding infrared spectroscopy analysis showed a dramatic change in conformation of the oligomeric chains from all-trans (n = 4) to helical (n ≥ 6) conformation. A crystalline helical structure was observed in the SAMs for n > 6.