Welcome to LookChem.com Sign In|Join Free

CAS

  • or

14067-05-1

Post Buying Request

14067-05-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14067-05-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 14067-05-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,0,6 and 7 respectively; the second part has 2 digits, 0 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 14067-05:
(7*1)+(6*4)+(5*0)+(4*6)+(3*7)+(2*0)+(1*5)=81
81 % 10 = 1
So 14067-05-1 is a valid CAS Registry Number.

14067-05-1Downstream Products

14067-05-1Relevant articles and documents

Flesch, G. D.,Ng, C. Y.

, p. 3381 - 3382 (1988)

Reed,Snedden

, p. 876 (1959)

Kusch, P.,Hustrulid, A.,Tate, J. T.

, p. 843 - 854 (1937)

Giese, C. F.,Maier, W. B.

, p. 197 - 200 (1963)

Harris, H. H.,Russell, M. E.

, p. 2270 - 2275 (1967)

Exothermic ion-molecule reactions

Moran,Friedman

, p. 3837 - 3845 (1966)

Dissociative charge-transfer reactions between rare-gas He+, Ne+ ions and diatomic N2, O2, CO, NO molecules have been studied as a function of reactant-ion velocity. N+, O +, and C+ fragment ions are the major reaction products observed in these exothermic reactions. Experimental cross sections and corresponding rate constants for thermal-energy ions are in semiquantitative agreement with the theoretical rates calculated from the long-range ion-induced-dipole potential. A reversed-repeller technique was used to probe the kinetic-energy distributions of the ionic reaction products and the experimental (0.2 to 1 eV) distributions so obtained are well correlated with the heats of the respective reactions. The kinetic energies of the product N+ and O+ ions were shifted to lower values when 3He+ was substituted for 4He+ ions in the NO and O2 reactions. This shift in product-ion kinetic energy rules out accidentally resonant chargetransfer processes involving excited product atoms and is consistent with a two-body breakup mechanism of transitory HeN+ and HeO+ at low reactant-ion velocities.

Reactions of Carbonyl Sulfide in a Radio-Frequency Plasma

Bezuk, Steve J.,Miller, Larry L.,Platzner, I.

, p. 131 - 136 (2007/10/02)

Carbonyl sulfide was flowed through the plasma zone of a 13.6-MHz inductively coupled discharge.The active plasma was sampled by mass and emission spectroscopy.Typical conditions were as follows: power, 5-25 W; pressure, 0.1-0.3 torr; flow rate, 4 cm3 min-1.Mass spectrometry showed the neutrals CO, S, and S2 as products.The major ions were COS+, S+, S2+, S3+, CO+, and CS2+.The variations in the ionic composition as pressure and power were changed were studied.Reaction products coat the reactor walls after some time and it was shown that this deposit could be sputtered with a CO or Ar plasma to produce sulfur-containing ions.Experiments using a small amount of 2-butyne as coreactant with COS suggested that this hydrocarbon reacted with sulfur atoms.Comparison with the chemistry of butane plus COS was made.Emission spectroscopy showed major bands due to CO* and CS*.S* emission had a lower intensity.It was shown that 5 mol percent of SF6 quenched much of the CS* emission.It is suggested that CS* is formed from electron-COS+ recombination.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14067-05-1