14385-48-9Relevant articles and documents
Promoting Lignin Depolymerization and Restraining the Condensation via an Oxidation-Hydrogenation Strategy
Zhang, Chaofeng,Li, Hongji,Lu, Jianmin,Zhang, Xiaochen,Macarthur, Katherine E.,Heggen, Marc,Wang, Feng
, p. 3419 - 3429 (2017)
For lignin valorization, simultaneously achieving the efficient cleavage of ether bonds and restraining the condensation of the formed fragments represents a challenge thus far. Herein, we report a two-step oxidation-hydrogenation strategy to achieve this goal. In the oxidation step, the O2/NaNO2/DDQ/NHPI system selectively oxidizes CαH-OH to Cα=O within the β-O-4 structure. In the subsequent hydrogenation step, the α-O-4 and the preoxidized β-O-4 structures are further hydrogenated over a NiMo sulfide catalyst, leading to the cleavage of Cβ-OPh and Cα-OPh bonds. Besides the transformation of lignin model compounds, the yield of phenolic monomers from birch wood is up to 32% by using this two-step strategy. The preoxidation of CαH-OH to Cα=O not only weakens the Cβ-OPh ether bond but also avoids the condensation reactions caused by the presence of Cα+ from dehydroxylation of CαH-OH. Furthermore, the NiMo sulfide prefers to catalyze the hydrogenative cleavage of the Cβ-OPh bond connecting with a Cα=O rather than catalyze the hydrogenation of Cα=O back to the original CαH-OH, which further ensures and utilizes the advantages of preoxidation.
One-Pot Transformation of Lignin and Lignin Model Compounds into Benzimidazoles
Guo, Tao,He, Jianghua,Liu, Tianwei,Zhang, Yuetao
, (2022/02/07)
It is a challenging task to simultaneously achieve selective depolymerization and valorization of lignin due to their complex structure and relatively stable bonds. We herein report an efficient depolymerization strategy that employs 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as oxidant/catalyst to selectively convert different oxidized lignin models to a wide variety of 2-phenylbenzimidazole-based compounds in up to 94 % yields, by reacting with o-phenylenediamines with varied substituents. This method could take full advantage of both Cβ and/or Cγ atom in lignin structure to furnish the desirable products instead of forming byproducts, thus exhibiting high atom economy. Furthermore, this strategy can effectively transform both the oxidized hardwood (birch) and softwood (pine) lignin into the corresponding degradation products in up to 45 wt% and 30 wt%, respectively. Through a “one-pot” process, we have successfully realized the oxidation/depolymerization/valorization of natural birch lignin at the same time and produced the benzimidazole derivatives in up to 67 wt% total yields.
Polycarboxylated compounds and compositions containing same
-
Page/Page column 17-22, (2021/06/09)
Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on β-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric β-hydroxy acid. The polymeric β-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The β-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers or oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.
Cleavage∕cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage
Jia, Le,Li, Chao-Jun,Zeng, Huiying
, (2021/10/29)
Lignin is the most recalcitrant of the three components of lignocellulosic biomass. The strength and stability of the linkages have long been a great challenge for the degradation and valorization of lignin biomass to obtain bio-fuels and commercial chemicals. Up to now, the selective cleavage of C–O linkages of lignin to afford chemicals contains only C, H and O atoms. Our group has developed a cleavage/cross-coupling strategy for converting 4-O-5 linkage lignin model compounds into high value-added compounds. Herein, we present a palladium-catalyzed cleavage/cross-coupling of the β-O-4 lignin model compounds with amines via dual C–O bond cleavage for the preparation of benzyl amine compounds and phenols.
Sustainable Production of Benzylamines from Lignin
Guo, Tenglong,Kühn, Fritz E.,Li, Changzhi,Liu, Yuxuan,Wang, Chao,Xiao, Jianliang,Zhang, Bo,Zhang, Tao,Zhao, Zongbao K.
, p. 20666 - 20671 (2021/08/25)
Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β-O-4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of Cα?OH, hydrogenolysis of the Cβ?O bond and reductive amination in the presence of Pd/C catalyst. Experimental data suggest that the dehydrogenation reaction proceeds over the other two reactions and secondary amines serve as both reducing agents and amine sources in the transformation. Moreover, the concept of “lignin to benzylamines” was demonstrated by a two-step process. This work represents a first example of synthesis of benzylamines from lignin, thus providing a new opportunity for the sustainable synthesis of benzylamines from renewable biomass, and expanding the products pool of biomass conversion to meet future biorefinery demands.
Synthesis and in vitro anti-Toxoplasma gondii activity of a new series of aryloxyacetophenone thiosemicarbazones
Ansari, Mahsa,Montazeri, Mahbobeh,Daryani, Ahmad,Farshadfar, Kaveh,Emami, Saeed
, p. 1223 - 1234 (2019/09/09)
Abstract: A new series of aryloxyacetophenone thiosemicarbazones 4a–q have been synthesized as anti-Toxoplasma gondii agents. All compounds showed significant inhibitory activity against T. gondii-infected cells (IC50 values 1.09–25.19?μg/mL). The 4-fluorophenoxy derivative (4l) was the most potent compound with the highest selectivity toward host cells (SI = 19), being better than standard drug pyrimethamine. SAR study indicated that the concurrence of proper substituents on both aryl ring of phenoxyacetophenone is important for potency and safety profile. Further in vitro experiments with the representative compounds 4l and 4p revealed that these compounds at the concentration of 5?μg/mL can significantly reduce the viability of T. gondii tachyzoites, as well as their infectivity rate and intracellular proliferation, comparable to those of pyrimethamine. Graphic abstract: [Figure not available: see fulltext.]
Activating molecular oxygen with Au/CeO2 for the conversion of lignin model compounds and organosolv lignin
Song, Wu-Lin,Dong, Qingmeng,Hong, Liang,Tian, Zhou-Qi,Tang, Li-Na,Hao, Wenli,Zhang, Hongxi
, p. 31070 - 31077 (2019/10/28)
Au/CeO2 was demonstrated to be a high efficiency catalyst for the conversion of 2-phenoxyacetophenol (PP-ol) employing O2 as an oxidant and methyl alcohol as the solvent without using an erosive strong base or acid. Mechanistic investigations, including emission quenching experiments, electron spin-resonance (ESR) and intermediate verification experiments, were carried out. The results verified that the superoxide anion activated by Au/CeO2 from molecular oxygen plays a vital role in the oxidation of lignin model compounds, and the cleavage of both the β-O-4 and Cα-Cβ linkages was involved. Au/CeO2 also performed well in the oxidative conversion of organosolv lignin under mild conditions (453 K), producing vanillin (10.5 wt%), methyl vanillate (6.8 wt%), methylene syringate (3.4 wt%) and a ring-opened product. Based on the detailed characterization data and mechanistic results, Au/CeO2 was confirmed to be a promising catalytic system.
Selective C-O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis
Magallanes, Gabriel,K?rk?s, Markus D.,Bosque, Irene,Lee, Sudarat,Maldonado, Stephen,Stephenson, Corey R. J.
, p. 2252 - 2260 (2019/02/19)
Lignin, which is a highly cross-linked and irregular biopolymer, is nature's most abundant source of aromatic compounds and constitutes an attractive renewable resource for the production of aromatic commodity chemicals. Herein, we demonstrate a practical and operationally simple two-step degradation approach involving Pd-catalyzed aerobic oxidation and visible-light photoredox-catalyzed reductive fragmentation for the chemoselective cleavage of the β-O-4 linkage - the predominant linkage in lignin - for the generation of lower-molecular-weight aromatic building blocks. The developed strategy affords the β-O-4 bond cleaved products with high chemoselectivity and in high yields, is amenable to continuous flow processing, operates at ambient temperature and pressure, and is moisture- and oxygen-tolerant.
Selective Cα Alcohol Oxidation of Lignin Substrates Featuring a β-O-4 Linkage by a Dinuclear Oxovanadium Catalyst via Two-Electron Redox Processes
Tsai, Yan-Ting,Chen, Chih-Yao,Hsieh, Yi-Ju,Tsai, Ming-Li
, p. 4637 - 4646 (2019/11/16)
Developing highly efficient catalyst systems to transform lignin biomass into value-added chemical feedstocks is imperative for utilizing lignin as renewable alternatives to fossil fuels. Recently, the pre-activated strategy involving the selective oxidat
Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization
Rafiee, Mohammad,Alherech, Manar,Karlen, Steven D.,Stahl, Shannon S.
supporting information, p. 15266 - 15276 (2019/10/19)
An electrochemical process has been developed for chemoselective oxidation of primary alcohols in lignin to the corresponding carboxylic acids. The electrochemical oxidation reactions proceed under mildly basic conditions and employ 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) and 4-acetamidoO (ACT) as catalytic mediators. Lignin model compounds and related alcohols are used to conduct structure-reactivity studies that provide insights into the origin of the reaction selectivity. The method is applied to the oxidation of lignin extracted from poplar wood chips via a mild acidolysis method, and the reaction affords a novel polyelectrolyte material. Gel permeation chromatography data for the oxidized lignin shows that this material has a molecular weight and molecular weight distribution very similar to that of the extracted lignin, but notable differences are also evident. Base titration reveals a significant increase in the acid content, and the oxidized lignin has much higher water solubility relative to the extracted lignin. Treatment of the oxidized lignin under acidic conditions results in depolymerization of the material into characterized aromatic monomers in nearly 30 wt% yield.