22675-96-3Relevant articles and documents
Mikhailov,Shorygina
, (1970)
Mild selective oxidative cleavage of lignin C-C bonds over a copper catalyst in water
Hu, Yuzhen,Li, Song,Ma, Longlong,Wang, Chenguang,Yan, Long,Zhang, Qi,Zhang, Xinghua,Zhao, Xuelai
, p. 7030 - 7040 (2021/09/28)
The conversion of lignin into aromatics as commodity chemicals and high-quality fuels is a highly desirable goal for biorefineries. However, the presence of robust inter-unit carbon-carbon (C-C) bonds in natural lignin seriously impedes this process. Herein, for the first time, we report the selective cleavage of C-C bonds in β-O-4 and β-1 linkages catalyzed by cheap copper and a base to yield aromatic acids and phenols in excellent yields in water at 30 °C under air without the need for additional complex ligands. Isotope-labeling experiments show that a base-mediated Cβ-H bond cleavage is the rate-determining step for Cα-Cβ bond cleavage. Density functional theory (DFT) calculations suggest that the oxidation of β-O-4 ketone to a key intermediate, i.e., a peroxide, by copper and O2 lowers the Cα-Cβ bond dissociation energy and facilitates its subsequent cleavage. In addition, the catalytic system could be successfully applied to the depolymerization of various authentic lignin feedstocks, affording excellent yields of aromatic compounds and high selectivity of a single monomer. This study offers the potential to economically produce aromatic chemicals from biomass.
Thio-assisted reductive electrolytic cleavage of lignin β-O-4 models and authentic lignin
Fang, Zhen,Flynn, Michael G.,Jackson, James E.,Hegg, Eric L.
, p. 412 - 421 (2021/01/28)
Avoiding the use of expensive catalysts and harsh conditions such as elevated temperatures and high pressures is a critical goal in lignin depolymerization and valorization. In this study, we present a thio-assisted electrocatalytic reductive approach using inexpensive reticulated vitreous carbon (RVC) as the working cathode to cleave the β-O-4-type linkages in keto aryl ethers. In the presence of a pre-electrolyzed disulfide (2,2′-dithiodiethanol) and a radical inhibitor (BHT) at room temperature at a current density of 2.5 mA cm-2, cathodic reduction of nonphenolic β-O-4 dimers afforded over 90% of the corresponding monomeric C-O cleavage products in only 1.5 h. Extended to DDQ-oxidized poplar lignin, this combination of electric current and disulfide, applied over 6 h, released 36 wt% of ethyl acetate soluble fragments and 26 wt% of aqueous soluble fragments, leaving only 38 wt% of insoluble residue. These findings represent a significant improvement over the current alone values (24 wt% ethyl acetate soluble; 22 wt% aqueous soluble; 54 wt% insoluble residue) and represent an important next step in our efforts to develop a mild electrochemical method for reductive lignin deconstruction.