Welcome to LookChem.com Sign In|Join Free

CAS

  • or

154026-93-4

Post Buying Request

154026-93-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

154026-93-4 Usage

Uses

(3R,5S)-6-Chloro-3,5-dihydroxyhexanoic Acid tert-Butyl Ester is an intermediate in the synthesis of Rosuvastatin (R700500), a selective, competitive HMG-CoA reductase inhibitor.

Check Digit Verification of cas no

The CAS Registry Mumber 154026-93-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,4,0,2 and 6 respectively; the second part has 2 digits, 9 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 154026-93:
(8*1)+(7*5)+(6*4)+(5*0)+(4*2)+(3*6)+(2*9)+(1*3)=114
114 % 10 = 4
So 154026-93-4 is a valid CAS Registry Number.
InChI:InChI=1/C10H19ClO4/c1-10(2,3)15-9(14)5-7(12)4-8(13)6-11/h7-8,12-13H,4-6H2,1-3H3/t7-,8+/m1/s1

154026-93-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate

1.2 Other means of identification

Product number -
Other names tert-butyl syn-(3R,5S)-6-chloro-3,5-dihydroxyhexanoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:154026-93-4 SDS

154026-93-4Relevant articles and documents

Improvement of carbonyl reductase activity for the bioproduction of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate

Liu, Zhi-Qiang,Yin, Huan-Huan,Zhang, Xiao-Jian,Zhou, Rong,Wang, Yan-Mei,Zheng, Yu-Guo

, p. 733 - 740 (2018)

tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is a key chiral intermediate for the side chain synthesis of rosuvastatin. In this study, random mutagenesis, site-saturation mutagenesis and combinatorial mutagenesis methods were applied to improve the activity of a synthesized stereoselective short chain carbonyl reductase (SCR) to prepare (3R,5S)-CDHH. After screened by high-throughput screening method and high-performance liquid chromatography, mut-Phe145Met/Thr152Ser and mut-Phe145Tyr/Thr152Ser, were obtained, and the enzyme activities of mutants were improved by 1.60- and 1.91-fold compared with parent enzyme, respectively. The catalytically efficiencies (kcat/Km) of mut-Phe145Met/Thr152Ser and mut-Phe145Tyr/Thr152Ser exhibited 5.11- and 8.07-fold improvements in initial activity toward (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH), respectively. In the asymmetric reduction, mut-Phe145Tyr/Thr152Ser catalyzed 500 g L?1 of (S)-CHOH to produce (3R,5S)-CDHH with >99% yield and >99% e.e., and the highest space-time yield achieved at 752.76 mmol L?1 h?1 g?1 wet cell weight within 8 h bioconversion. This study provides a foundation for the preparation of (3R,5S)-CDHH by carbonyl reductase.

Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols

Chen, Yi,Cheng, Feng,Jin, Ling-Jun,Li, Shu-Fang,Qiu, Shuai,Wang, Ya-Jun,Zheng, Yu-Guo

, (2020/09/07)

Aldo-keto reductase KmAKR-catalyzed asymmetric reduction offers a green approach to produce dichiral diol tert-butyl 6-substituted-(3R,5R/S)-dihydroxyhexanoates, which are important building blocks of statins. In our previous work, we cloned a novel gene of NADPH-specific aldo-keto reductase KmAKR (WT) from a thermotolerant yeast Kluyveromyces marxianus ZJB14056 and a mutant KmAKR-W297H/Y296W/K29H (Variant III) has been constructed and displayed strict diastereoselectivity towards tert-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1) but moderate activity and stability. Herein, to further co-evolve its activity and thermostability, we performed semi-rational engineering of Variant III by using a combinational screening strategy, consisting of tertiary structure analysis, loop engineering, and alanine scanning. As results, the “best” variant KmAKR-W297H/Y296W/K29H/Y28A/T63M (Variant VI) was acquired, whose Km, kcat/Km towards (5R)-1 was 0.66 mM and 210.77 s?1 mM?1, respectively, with improved thermostability (half-life of 14.13 h at 40 °C). Combined with 1.5 g dry cell weight (DCW) L-1 Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for NADPH regeneration, 4.5 g DCW L-1 Variant VI completely reduced (5R)-1 of up to 450 g L?1 within 7.0 h at 40 °C, yielding the corresponding optically pure tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-3, >99.5% d.e.p) with a space–time yield (STY) of 1.24 kg L?1 day?1, and this was the highest level documented in literatures so far on substrate loading and STY of producing (3R,5R)-3. Besides (5R)-1, Variant VI displayed strong activity on tert-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-2). 4.5 g DCW L-1 Variant VI completely reduced 400 g L?1 (5S)-2, within 5.0 h at 40 °C, yielding optically pure tert-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-4, >99.5% d.e.p) with a STY of 1.34 kg L?1 day?1. In summary, Variant VI displayed industrial application potential in statins biomanufacturing.

Enzymatic preparation of optically pure t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate by a novel alcohol dehydrogenase discovered from Klebsiella oxytoca

Xu, Tingting,Wang, Can,Zhu, Shaozhou,Zheng, Guojun

, p. 72 - 79 (2017/05/24)

Alcohol dehydrogenases can catalyze the inter-conversion of aldehydes and alcohols. The t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate is a key chiral intermediate in the synthesis of statin-type drugs such as Crestor (rosuvastatin calcium) and Lipitor (atorvastatin). Herein, a novel alcohol dehydrogenase (named as KleADH) discovered from Klebsiella oxytoca by a genome mining method was cloned and characterized. The KleADH was functionally overexpressed in Escherichia coli Rosetta (DE3) and the whole cell biocatalyst was able to convert t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate to t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate with more than 99% diastereomeric excess (de) and 99% conversion in 24?h without adding any expensive cofactors. Several factors influencing the whole cell catalyst activity such as temperature, pH, the effects of metal ions and organic solvent were determined. The optimum enzyme activity was achieved at 30?°C and pH 7.0 and it was shown that 1?mM Fe3+ can increase the enzyme activity by 1.2 times. N-hexane/water and n-heptane/water biphasic systems can also increase the activity of KleADH. Substrate specificity studies showed that KleADH also exhibited notable activity towards several aryl ketones with high stereoselectivity. Our investigation on this novel alcohol dehydrogenase KleADH reveals a promising biocatalyst for producing chiral alcohols for preparation of valuable pharmaceuticals.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 154026-93-4