Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1572-96-9

Post Buying Request

1572-96-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1572-96-9 Usage

General Description

"(R)-3,3-DIMETHYL-2-BUTANOL" is a chemical compound with the molecular formula C6H14O. It is a colorless liquid with a camphor-like odor. (R)-3,3-DIMETHYL-2-BUTANOL is commonly used as a solvent, a flavoring agent, and a fragrance in various industrial and commercial applications. It is also used in the synthesis of other organic compounds. Additionally, it has been studied for its potential as a chiral building block in the production of pharmaceuticals and agrochemicals. Although it is considered to have low toxicity, it is important to handle this compound with proper care and follow safety guidelines in its use.

Check Digit Verification of cas no

The CAS Registry Mumber 1572-96-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,5,7 and 2 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1572-96:
(6*1)+(5*5)+(4*7)+(3*2)+(2*9)+(1*6)=89
89 % 10 = 9
So 1572-96-9 is a valid CAS Registry Number.

1572-96-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (2R)-3,3-dimethylbutan-2-ol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1572-96-9 SDS

1572-96-9Relevant articles and documents

Substrate Analogues for the Enzyme-Catalyzed Detoxification of the Organophosphate Nerve Agents—Sarin, Soman, and Cyclosarin

Bigley, Andrew N.,Harvey, Steven P.,Narindoshvili, Tamari,Raushel, Frank M.

, p. 2875 - 2887 (2021/10/01)

The G-type nerve agents, sarin (GB), soman (GD), and cyclosarin (GF), are among the most toxic compounds known. Much progress has been made in evolving the enzyme phosphotriesterase (PTE) fromPseudomonas diminutafor the decontamination of the G-agents; however, the extreme toxicity of the G-agents makes the use of substrate analogues necessary. Typical analogues utilize a chromogenic leaving group to facilitate high-throughput screening, and substitution of anO-methyl for theP-methyl group found in the G-agents, in an effort to reduce toxicity. Till date, there has been no systematic evaluation of the effects of these substitutions on catalytic activity, and the presumed reduction in toxicity has not been tested. A series of 21 G-agent analogues, including all combinations ofO-methyl,p-nitrophenyl, and thiophosphate substitutions, have been synthesized and evaluated for their ability to unveil the stereoselectivity and catalytic activity of PTE variants against the authentic G-type nerve agents. The potential toxicity of these analogues was evaluated by measuring the rate of inactivation of acetylcholinesterase (AChE). All of the substitutions reduced inactivation of AChE by more than 100-fold, with the most effective being the thiophosphate analogues, which reduced the rate of inactivation by about 4-5 orders of magnitude. The analogues were found to reliably predict changes in catalytic activity and stereoselectivity of the PTE variants and led to the identification of the BHR-30 variant, which has no apparent stereoselectivity against GD and akcat/Kmof 1.4 × 106, making it the most efficient enzyme for GD decontamination reported till date.

London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey–Bakshi–Shibata Reduction

Eschmann, Christian,Song, Lijuan,Schreiner, Peter R.

, p. 4823 - 4832 (2021/02/01)

The well-known Corey–Bakshi–Shibata (CBS) reduction is a powerful method for the asymmetric synthesis of alcohols from prochiral ketones, often featuring high yields and excellent selectivities. While steric repulsion has been regarded as the key director of the observed high enantioselectivity for many years, we show that London dispersion (LD) interactions are at least as important for enantiodiscrimination. We exemplify this through a combination of detailed computational and experimental studies for a series of modified CBS catalysts equipped with dispersion energy donors (DEDs) in the catalysts and the substrates. Our results demonstrate that attractive LD interactions between the catalyst and the substrate, rather than steric repulsion, determine the selectivity. As a key outcome of our study, we were able to improve the catalyst design for some challenging CBS reductions.

Highly Enantioselective Transfer Hydrogenation of Prochiral Ketones Using Ru(II)-Chitosan Catalyst in Aqueous Media

Sz?ll?si, Gy?rgy,Kolcsár, Vanessza Judit

, p. 820 - 830 (2018/12/13)

Unprecedentedly high enantioselectivities are obtained in the transfer hydrogenation of prochiral ketones catalyzed by a Ru complex formed in situ with chitosan chiral ligand. This biocompatible, biodegradable chiral polymer obtained from the natural chitin afforded good, up to 86 % enantioselectivities, in the aqueous-phase transfer hydrogenation of acetophenone derivatives using HCOONa as hydrogen donor. Cyclic ketones were transformed in even higher, over 90 %, enantioselectivities, whereas further increase, up to 97 %, was obtained in the transfer hydrogenations of heterocyclic ketones. The chiral catalyst precursor prepared ex situ was examined by scanning electron microscopy, FT-mid- and -far-IR spectroscopy. The structure of the in situ formed catalyst was investigated by 1H NMR spectroscopy and using various chitosan derivatives. It was shown that a Ru pre-catalyst is formed by coordination of the biopolymer to the metal by amino groups. This precursor is transformed in water insoluble Ru-hydride complex following hydrogen donor addition. The practical value of the developed method was verified by preparing over twenty chiral alcohols in good yields and optical purities. The catalyst was applied for obtaining optically pure chiral alcohols at gram scale following a single crystallization.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1572-96-9