163210-40-0Relevant articles and documents
Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439)
, p. 2654 - 2668 (2017)
Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metab
INDAZOLE BASED COMPOUNDS AND ASSOCIATED METHODS OF USE
-
Paragraph 00244, (2021/10/02)
Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
IRAK DEGRADERS AND USES THEREOF
-
Paragraph 00618; 00620-00621, (2021/08/13)
The present invention provides compounds, compositions thereof, and methods of using the same.
COMPOUNDS AND METHODS FOR TARGETED DEGRADATION OF KRAS
-
Paragraph 00270, (2021/10/15)
Bifunctional compounds, which find utility as modulators of Kirsten ras sarcoma protein (KRas or KRAS), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the Von Hippel-Lindau E3 ubiquitin ligase and on the other end a moiety which binds KRas, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The heterobifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
BIFUNCTIONAL MOLECULES CONTAINING AN E3 UBIQUITINE LIGASE BINDING MOIETY LINKED TO A BCL6 TARGETING MOIETY
-
Paragraph 00627; 00628, (2021/04/23)
Bifunctional compounds, which find utility as modulators of B-cell lymphoma 6 protein (BCL6; target protein), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a Von Hippel-Lindau, cereblon, Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand that binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands
Renk, Dana R.,Skraban, Marcel,Bier, Dirk,Schulze, Annette,Wabbals, Erika,Wedekind, Franziska,Neumaier, Felix,Neumaier, Bernd,Holschbach, Marcus
, (2021/02/09)
With the aim to obtain potent adenosine A2A receptor (A2AR) ligands, a series of eighteen derivatives of 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide (SYN-115, Tozadenant) were designed and synthesized. The target compounds were obtained by a chemical building block principle that involved reaction of the appropriate aminobenzothiazole phenyl carbamates with either commercially available or readily synthesized functionalized piperidines. Their affinity and subtype selectivity with regard to human adenosine A1-and A2A receptors were determined using radioligand binding assays. Ki values for human A2AR ranged from 2.4 to 38 nM, with more than 120-fold selectivity over A1 receptors for all evaluated compounds except 13k which had a Ki of 361 nM and 18-fold selectivity. The most potent fluorine-containing derivatives 13e, 13g and 13l exhibited Ki values of 4.9 nM, 3.6 nM and 2.8 nM for the human A2AR. Interestingly, the corresponding values for rat A2AR were found to be four to five times higher. Their binding to A2AR was further confirmed by radiolabeling with 18F and in vitro autoradiography in rat brain slices, which showed almost exclusive striatal binding and complete displacement by the A2AR antagonist ZM 241385. We conclude that these compounds represent potential candidates for the visualization of the A2A receptor and open pathways to novel therapeutic treatments of neurodegenerative disorders or cancer.
PI-2620 Lead Optimization Highlights the Importance of Off-Target Assays to Develop a PET Tracer for the Detection of Pathological Aggregated Tau in Alzheimer's Disease and Other Tauopathies
Berndt, Mathias,Capotosti, Francesca,Dinkelborg, Ludger,Gabellieri, Emanuele,Hickman, David,Kroth, Heiko,Molette, Jerome,Mueller, Andre,Oden, Felix,Pfeifer, Andrea,Schieferstein, Hanno,Schmitt-Willich, Heribert,Serra, Andreia Monica,Sreenivasachary, Nampally,Stephens, Andrew
, p. 12808 - 12830 (2021/09/13)
The first candidate PI-2014 was tested in healthy controls and subjects with Alzheimer's disease (AD). As PI-2014 displayed off-target binding to monoamine oxidase A (MAO-A), a new lead with improved binding to Tau and decreased MAO-A binding was required. For compound optimization, Tau binding assays based on both human AD brain homogenate and Tau-paired helical filaments were employed. Furthermore, two MAO-A screening assays based on (1) human-recombinant MAO-A and (2) displacement of 2-fluoro-ethyl-harmine from mouse brain homogenate were employed. Removing the N-methyl group from the tricyclic core resulted in compounds displaying improved Tau binding. For the final round of optimization, the cyclic amine substituents were replaced by pyridine derivatives. PI-2620 (2-(2-fluoropyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c′]dipyridine) emerged as a best candidate displaying high Tau binding, low MAO-A binding, high brain uptake, and fast and complete brain washout. Furthermore, PI-2620 showed Tau binding on brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease.
IRAK DEGRADERS AND USES THEREOF
-
Paragraph 002524; 002527-002528, (2021/01/23)
The present invention provides compounds, compositions thereof, and methods of using the same. The compounds include an IRAK binding moiety capable of binding to IRAK4 and a degradation inducing moiety (DIM). The DIM could be DTM a ligase binding moiety (LBM) or lysine mimetic. The compounds could be useful as IRAK protein kinase inhibitors and applied to IRAK mediated disorders.
IRAK DEGRADERS AND USES THEREOF
-
Paragraph 4108; 4110, (2019/07/10)
The present invention provides compounds, compositions thereof, and methods of using the same.
MODULATORS OF PROTEOLYSIS AND ASSOCIATED METHODS OF USE
-
Paragraph 00783, (2019/10/29)
The present disclosure relates to bifunctional compounds, which find utility as modulators of Kirsten rat sarcoma protein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon, Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation, accumulation, and/or overactivation of the target protein are treated or prevented with compounds and compositions of the present disclosure.