Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16713-13-6

Post Buying Request

16713-13-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16713-13-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 16713-13-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,7,1 and 3 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 16713-13:
(7*1)+(6*6)+(5*7)+(4*1)+(3*3)+(2*1)+(1*3)=96
96 % 10 = 6
So 16713-13-6 is a valid CAS Registry Number.

16713-13-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name TOLUENE, [3H]

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16713-13-6 SDS

16713-13-6Relevant articles and documents

One-Pass Conversion of Benzene and Syngas to Alkylbenzenes by Cu–ZnO–Al2O3 and ZSM-5 Relay

Han, Tengfei,Xu, Hong,Liu, Jianchao,Zhou, Ligong,Li, Xuekuan,Dong, Jinxiang,Ge, Hui

, p. 467 - 479 (2021/05/21)

Alkylbenzenes have a wide range of uses and are the most demanded aromatic chemicals. The finite petroleum resources compels the development of production of alkylbenzenes by non-petroleum routes. One-pass selective conversion of benzene and syngas to alkylbenzenes is a promising alternative coal chemical engineering route, yet it still faces challenge to industrialized applications owing to low conversion of benzene and syngas. Here we presented a Cu–ZnO–Al2O3/ZSM-5 bifunctional catalyst which realizes one-pass conversion of benzene and syngas to alkylbenzenes with high efficiency. This bifunctional catalyst exhibited high benzene conversion (benzene conversion of 50.7%), CO conversion (CO conversion of 55.0%) and C7&C8 aromatics total yield (C7&C8 total yield of 45.0%). Characterizations and catalytic performance evaluations revealed that ZSM-5 with well-regulated acidity, as a vital part of this Cu–ZnO–Al2O3/ZSM-5 bifunctional catalyst, substantially contributed to its performance for the alkylbenzenes one-pass synthesis from benzene and syngas due to depress methanol-to-olefins (MTO) reaction. Furthermore, matching of the mass ratio of two active components in the dual-function catalyst and the temperature of methanol synthesis with benzene alkylation reactions can effectively depress the formation of unwanted by-products and guarantee the high performance of tandem reactions. Graphic Abstract: [Figure not available: see fulltext.]

MOF-derived Ru@ZIF-8 catalyst with the extremely low metal Ru loading for selective hydrogenolysis of C–O bonds in lignin model compounds under mild conditions

Cao, Jing-Pei,Jiang, Wei,Xie, Jin-Xuan,Zhang, Chuang,Zhang, Jian-Li,Zhao, Liang,Zhao, Xiao-Yan,Zhao, Yun-Peng,Zhu, Chen

, p. 488 - 496 (2022/02/07)

Lignin hydrogenolysis to produce chemicals and biofuels is a challenge due to the stable C–O ether bond structure. Metal–organic framework (MOF) materials with excellent structural and chemical versatility have received widespread attention. Herein, a highly dispersed Ru metal anchored in functionalised ZIF-8 was fabricated by a general host–guest and reduction strategy. The Ru@ZIF-8 catalyst with a high specific surface area could efficiently promote the C–O bond cleavage of a variety of lignin model compounds under mild conditions. Compared with previous studies, the extremely low metal Ru loading in the Ru@ZIF-8 catalyst achieved a relatively higher activity. The introduction of Ru metal not only improved the dispersion of Zn metal, but also enhanced the electron density on the Zn surface, suggesting a high catalytic performance. It was more conducive for the Ru@ZIF-8 catalyst to exhibit the C–O bond cleavage activity when in the presence of both H2 and isopropanol. An investigation of the mechanism revealed that the direct hydrogenolysis of benzyl phenyl ether was the main reaction pathway.

One-step conversion of lignin-derived alkylphenols to light arenes by co-breaking of C-O and C-C bonds

Di, Yali,Li, Guangyu,Li, Zhiqin,Liu, Weiwei,Qiu, Zegang,Ren, Xiaoxiong,Wang, Ying

, p. 2710 - 2721 (2022/02/21)

The conversion of lignin-derived alkylphenols to light arenes by a one-step reaction is still a challenge. A 'shortcut' route to transform alkylphenols via the co-breaking of C-O and C-C bonds is presented in this paper. The catalytic transformation of 4-ethylphenol in the presence of H2 was used to test the breaking of C-O and C-C bonds. It was found that the conversion of 4-ethylphenol was nearly 100%, and the main products were light arenes (benzene and toluene) and ethylbenzene under the catalysis of Cr2O3/Al2O3. The conversion of 4-ethylphenol and the selectivity of the products were significantly influenced by the reaction temperature. The selectivity for light arenes reached 55.7% and the selectivity for overall arenes was as high as 84.0% under suitable reaction conditions. Such results confirmed that the co-breaking of the C-O and C-C bonds of 4-ethylphenol on a single catalyst by one step was achieved with high efficiency. The adsorption configuration of the 4-ethylphenol molecule on the catalyst played an important role in the breaking of the C-O and C-C bonds. Two special adsorption configurations of 4-ethylphenol, including a parallel adsorption and a vertical adsorption, might exist in the reaction process, as revealed by DFT calculations. They were related to the breaking of C-O and C-C bonds, respectively. A path for the hydrogenation reaction of 4-ethylphenol on Cr2O3/Al2O3 was proposed. Furthermore, the co-breaking of the C-O and C-C bonds was also achieved in the hydrogenation reactions of several alkylphenols. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16713-13-6