16909-23-2Relevant articles and documents
Ambident Reactivity of Phenolate Anions Revisited: A Quantitative Approach to Phenolate Reactivities
Mayer, Robert J.,Breugst, Martin,Hampel, Nathalie,Ofial, Armin R.,Mayr, Herbert
, p. 8837 - 8858 (2019/07/08)
Prompted by the observation that the regioselectivities of phenolate reactions (C versus O attack) are opposite to the predictions by the principle of hard and soft acids and bases, we performed a comprehensive experimental and computational investigation of phenolate reactivities. Rate and equilibrium constants for the reactions of various phenolate ions with benzhydrylium ions (Aryl2CH+) and structurally related quinone methides have been determined photometrically in polar aprotic solvents. Quantum chemical calculations at the SMD(MeCN)/M06-2X/6-31+G(d,p) level confirmed that O attack is generally favored under kinetically controlled conditions, whereas C attack is favored under thermodynamically controlled conditions. Exceptions are diffusion-limited reactions with strong electrophiles, which give mixtures of products arising from O and C attack, as well as reactions with metal alkoxides in nonpolar solvents, where oxygen attack is blocked by strong ion pairing. The Lewis basicity (LB) and nucleophilicity (N, sN) parameters of phenolates determined in this work can be used to predict whether their reactions with electrophiles are kinetically or thermodynamically controlled and whether the rates are activation- or diffusion-limited. Comparison of the measured rate constants for the reactions of phenolates with carbocations with the Gibbs energies for single-electron transfer manifests that these reactions proceed via polar mechanisms.
Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand
Hooe, Shelby L.,Rheingold, Arnold L.,MacHan, Charles W.
supporting information, p. 3232 - 3241 (2018/03/13)
The synthesis and electrocatalytic reduction of dioxygen by a molecular manganese(III) complex with a tetradentate dianionic bipyridine-based ligand is reported. Electrochemical characterization indicates a Nernstian dependence on the added proton source for the reduction of Mn(III) to Mn(II). The resultant species is competent for the reduction of dioxygen to H2O2 with 81 ± 4% Faradaic efficiency. Mechanistic studies suggest that the catalytically active species has been generated through the interaction of the added proton donor and the parent Mn complex, resulting in the protonation of a coordinated phenolate moiety following the single-electron reduction, generating a neutral species with a vacant coordination site at the metal center. As a consequence, the active catalyst has a pendent proton source in close proximity to the active site for subsequent intramolecular reactions.