171032-87-4Relevant articles and documents
Biocatalytic reduction of ketones by a semi-continuous flow process using supercritical carbon dioxide
Matsuda, Tomoko,Watanabe, Kazunori,Kamitanaka, Takashi,Harada, Tadao,Nakamura, Kaoru
, p. 1198 - 1199 (2003)
The immobilized resting-cell of Geotrichum candidum was used as a catalyst for the reduction of a ketone in a semi-continuous flow process using supercritical carbon dioxide for the first time; it was also applied for the asymmetric reduction of a ketone
Cinchona-Alkaloid-Derived NNP Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones
Zhang, Lin,Zhang, Ling,Chen, Qian,Li, Linlin,Jiang, Jian,Sun, Hao,Zhao, Chong,Yang, Yuanyong,Li, Chun
supporting information, p. 415 - 419 (2022/01/12)
Most ligands applied for asymmetric hydrogenation are synthesized via multistep reactions with expensive chemical reagents. Herein, a series of novel and easily accessed cinchona-alkaloid-based NNP ligands have been developed in two steps. By combining [Ir(COD)Cl]2, 39 ketones including aromatic, heteroaryl, and alkyl ketones have been hydrogenated, all affording valuable chiral alcohols with 96.0-99.9% ee. A plausible reaction mechanism was discussed by NMR, HRMS, and DFT, and an activating model involving trihydride was verified.
Arene-Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones
Doherty, Simon,Knight, Julian G.,Alshaikh, Hind,Wilson, James,Waddell, Paul G.,Wills, Corinne,Dixon, Casey M.
supporting information, p. 226 - 235 (2020/12/31)
The Noyori-Ikariya (arene)Ru(II)/TsDPEN precatalyst has been anchored to amorphous silica and DAVISIL through the η6-coordinated arene ligand via a straightforward synthesis and the derived systems, (arene)Ru(II)/TsDPEN@silica and (arene)Ru(II)/TsDPEN@DAVISIL, form highly efficient catalysts for the asymmetric transfer hydrogenation of a range of electron-rich and electron-poor aromatic ketones, giving good conversion and excellent ee's under mild reaction conditions. Moreover, catalyst generated in situ immediately prior to addition of substrate and hydrogen donor, by reaction of silica-supported [(arene)RuCl2]2 with (S,S)-TsDPEN, was as efficient as that generated from its preformed counterpart [(arene)Ru{(S,S)-TsDPEN}Cl]@silica. Gratifyingly, the initial TOFs (up to 1085 h?1) and ee's (96–97 %) obtained with these catalysts either rivalled or outperformed those previously reported for catalysts supported by either silica or polymer immobilized through one of the nitrogen atoms of TsDPEN. While the high ee's were also maintained during recycle studies, the conversion dropped steadily over the first three runs due to gradual leaching of the ruthenium.
Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity
Li, Aipeng,Wang, Ting,Tian, Qing,Yang, Xiaohong,Yin, Dongming,Qin, Yong,Zhang, Lianbing
, p. 6283 - 6294 (2021/03/16)
Enzyme stereoselectivity control is still a major challenge. To gain insight into the molecular basis of enzyme stereo-recognition and expand the source of antiPrelog carbonyl reductase toward β-ketoesters, rational enzyme design aiming at stereoselectivity inversion was performed. The designed variant Q139G switched the enzyme stereoselectivity toward β-ketoesters from Prelog to antiPrelog, providing corresponding alcohols in high enantiomeric purity (89.1–99.1 % ee). More importantly, the well-known trade-off between stereoselectivity and activity was not found. Q139G exhibited higher catalytic activity than the wildtype enzyme, the enhancement of the catalytic efficiency (kcat/Km) varied from 1.1- to 27.1-fold. Interestingly, the mutant Q139G did not lead to reversed stereoselectivity toward aromatic ketones. Analysis of enzyme–substrate complexes showed that the structural flexibility of β-ketoesters and a newly formed cave together facilitated the formation of the antiPrelog-preferred conformation. In contrast, the relatively large and rigid structure of the aromatic ketones prevents them from forming the antiPrelog-preferred conformation.
Ruthenium-catalyzed hydrogenation of aromatic ketones using chiral diamine and monodentate achiral phosphine ligands
Wang, Mengna,Zhang, Ling,Sun, Hao,Chen, Qian,Jiang, Jian,Li, Linlin,Zhang, Lin,Li, Li,Li, Chun
, (2021/03/24)
The Ru-catalyzed asymmetric hydrogenation of ketones with chiral diamine and monodentate achiral phosphine has been developed. A wide range of ketones were hydrogenated to afford the corresponding chiral secondary alcohols in good to excellent enantioselectivities (up to 98.1% ee). In addition, an appropriate mechanism for the asymmetric hydrogenation was proposed and verified by NMR spectroscopy.
Biocatalytic preparation of a key intermediate of antifungal drugs using an alcohol dehydrogenase with high organic tolerance
Yan, Jinrong,Wang, Xiaojing,Li, Fangling,Yang, Lei,Shi, Guixiang,Sun, Weihang,Shao, Lei,Huang, Junhai,Wu, Kai
supporting information, (2021/10/20)
In this study, an alcohol dehydrogenase derived from Lactobacillus kefir (LkADH) was engineered and a simple and practical bioreduction system was developed for the preparation of (R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol ((R)-CDPO), a key intermediate for the synthesis of antifungal drugs. Through active pocket iterative saturation mutagenesis, mutant LkADH-D18 (Y190C/V196L/M206H/D150H) was obtained with high stereoselectivity (99% ee, R vs 87% ee, S) and increased activity (0.44 μmol·min?1·mg?1). LkADH-D18 demonstrated NAD(P)H regeneration capability using a high concentration of isopropanol (IPA) as a co-substrate. Using 40% IPA (v/v), 400 mM of (R)-CDPO (90.1 g·L-1) was obtained via complete substrate conversion using 40 mg·mL?1 LkADH-D18 wet cells. The biocatalytic process catalyzed at constant pH with the cheap co-solvent IPA contributed to improved isolated yield of (R)-CDPO (97%), lower reaction cost, and simpler downstream purification, indicating the potential utility of LkADH-D18 in future industrial applications.
Novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone
-
Paragraph 0144-0149, (2021/04/26)
The invention discloses a novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone. The preparation method of a chiral alcohol compound shown as formula IV comprises the following step of: reacting a ketone compound shown as formula V with hydrogen under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound to obtain the chiral alcohol compound shown as the formula IV; the preparation method of a chiral tetralone compound shown as formula VI comprises the following step of: under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound, reacting an alpha, beta-unsaturated ketone compound shown as formula VII with hydrogen to obtain the chiral tetralone compound shown as the formula VI. The method has the advantages of easy synthesis of raw materials, mild reaction conditions, simple operation, high stereoselectivity and the like, the ee value of the product is up to 92%, and the yield is up to 99%.
Tridentate nitrogen phosphine ligand containing arylamine NH as well as preparation method and application thereof
-
Paragraph 0095-0102; 0105-0109, (2021/06/26)
The invention discloses a tridentate nitrogen phosphine ligand containing arylamine NH as well as a preparation method and application thereof, and belongs to the technical field of organic synthesis. The tridentate nitrogen phosphine ligand disclosed by the invention is the first case of tridentate nitrogen phosphine ligand containing not only a quinoline amine structure but also chiral ferrocene at present, a noble metal complex of the type of ligand shows good selectivity and extremely high catalytic activity in an asymmetric hydrogenation reaction, meanwhile, a cheap metal complex of the ligand can also show good selectivity and catalytic activity in the asymmetric hydrogenation reaction, and is very easy to modify in the aspects of electronic effect and space structure, so that the ligand has huge potential application value. A catalyst formed by the ligand and a transition metal complex can be used for catalyzing various reactions, can be used for synthesizing various drugs, and has important industrial application value.
Enantioselective Hydroboration of Ketones Catalyzed by Rare-Earth Metal Complexes Containing Trost Ligands
Lu, Chengrong,Sun, Yuli,Xue, Mingqiang,Zhao, Bei
, p. 10504 - 10513 (2020/09/23)
Four chiral dinuclear rare-earth metal complexes [REL1]2 (RE = Y(1), Eu(2), Nd(3), La (4)) stabilized by Trost proligand H3L1 (H3L1 = (S,S)-2,6-bis[2-(hydroxydiphenylmethyl)pyrrolidin-1-ylmethyl]-4-methylphenol) were first prepared, and all were characterized by X-ray diffraction. Complex 4 was employed as the catalyst for enantioselective hydroboration reaction of substituted ketones, and the corresponding secondary alcohols with excellent yields and high ee values were obtained using reductant HBpin. The same result was also achieved using the combination of lanthanium amides La[N(SiMe3)2]3 with Trost proligand H3L1 in a 1:1 molar ratio. The experimental findings and DFT calculation revealed the possible mechanism of the enantioselective hydroboration reaction and defined the origin of the enantioselectivity in the current system.
Chiral Imidazo[1,5- a]pyridine-Oxazolines: A Versatile Family of NHC Ligands for the Highly Enantioselective Hydrosilylation of Ketones
Chinna Ayya Swamy,Varenikov, Andrii,Ruiter, Graham De
supporting information, p. 247 - 257 (2020/02/04)
Herein we report the synthesis and application of a versatile class of N-heterocyclic carbene ligands based on an imidazo[1,5-a]pyridine-3-ylidine backbone that is fused to a chiral oxazoline auxiliary. The key step in the synthesis of these ligands involves the installation of the oxazoline functionality via a microwave-assisted condensation of a cyano-azolium salt with a wide variety of 2-amino alcohols. The resulting chiral bidentate NHC-oxazoline ligands form stable complexes with rhodium(I) that are efficient catalysts for the enantioselective hydrosilylation of structurally diverse ketones. The corresponding secondary alcohols are isolated in good yields (typically >90%) with good to excellent enantioselectivities (80-93% ee). The reported hydrosilylation occurs at ambient temperatures (40 °C), with excellent functional group tolerability. Even ketones bearing heterocyclic substituents (e.g., pyridine or thiophene) or complex organic architectures are hydrosilylated efficiently, which is discussed further in this report.