Welcome to LookChem.com Sign In|Join Free

CAS

  • or

17494-61-0

Post Buying Request

17494-61-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

17494-61-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 17494-61-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,4,9 and 4 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 17494-61:
(7*1)+(6*7)+(5*4)+(4*9)+(3*4)+(2*6)+(1*1)=130
130 % 10 = 0
So 17494-61-0 is a valid CAS Registry Number.
InChI:InChI=1/C15H16O2S/c16-18(17,15-11-5-2-6-12-15)13-7-10-14-8-3-1-4-9-14/h1-6,8-9,11-12H,7,10,13H2

17494-61-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(benzenesulfonyl)propylbenzene

1.2 Other means of identification

Product number -
Other names Sulfone,phenyl 3-phenylpropyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:17494-61-0 SDS

17494-61-0Relevant articles and documents

Base-Mediated Radical Borylation of Alkyl Sulfones

Huang, Mingming,Hu, Jiefeng,Krummenacher, Ivo,Friedrich, Alexandra,Braunschweig, Holger,Westcott, Stephen A.,Radius, Udo,Marder, Todd B.

supporting information, (2021/12/02)

A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2neop2), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.

Catalyst-Free Decarboxylation of Carboxylic Acids and Deoxygenation of Alcohols by Electro-Induced Radical Formation

Chen, Xiaoping,Luo, Xiaosheng,Peng, Xiao,Guo, Jiaojiao,Zai, Jiantao,Wang, Ping

, p. 3226 - 3230 (2020/02/27)

Electro-induced reduction of redox active esters and N-phthalimidoyl oxalates derived from naturally abundant carboxylic acids and alcohols provides a sustainable and inexpensive approach to radical formation via undivided electrochemical cells. The resulting radicals are trapped by an electron-poor olefin or hydrogen atom source to furnish the Giese reaction or reductive decarboxylation products, respectively. A broad range of carboxylic acid (1°, 2°, and 3°) and alcohol (2° and 3°) derivatives are applicable in this catalyst-free reaction, which tolerated a diverse range of functional groups. This method features simple operation, is a sustainable platform, and has broad application.

Carbonyls as Latent Alkyl Carbanions for Conjugate Additions

Dai, Xi-Jie,Wang, Haining,Li, Chao-Jun

supporting information, p. 6302 - 6306 (2017/05/19)

Conjugate addition of carbon nucleophiles to electron-deficient olefins is one of the most powerful methods for forming carbon–carbon bonds. Despite great achievements in controlling the selectivity, variation of the carbon nucleophiles remains largely underexplored, with this approach relying mostly on organometallic reagents. Herein, we report that naturally abundant carbonyls can act as latent carbon nucleophiles for conjugate additions through a ruthenium-catalyzed process, with water and nitrogen as innocuous byproducts. The key to our success is homogeneous ruthenium(II) catalysis, combined with phosphines as spectator ligands and hydrazine as the reducing agent. This chemistry allows the incorporation of highly functionalized alkyl fragments into a vast array of electron-deficient olefins under mild reaction conditions in a reaction complementary to the classical organometallic-reagent-based conjugate additions mediated or catalyzed by “soft” transition metals.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17494-61-0