17966-67-5Relevant articles and documents
Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes
Chen, Jian,Zhu, Shaolin
supporting information, p. 14089 - 14096 (2021/09/13)
A nickel-catalyzed, multicomponent regio- and enantioselective coupling via sequential hydroformylation and carbonylation from readily available starting materials has been developed. This modular multicomponent hydrofunctionalization strategy enables the straightforward reductive hydrocarbonylation of a broad range of unactivated alkenes to produce a wide variety of unsymmetrical dialkyl ketones bearing a functionalized α-stereocenter, including enantioenriched chiral α-aryl ketones and α-amino ketones. It uses chiral bisoxazoline as a ligand, silane as a reductant, chloroformate as a safe CO source, and a racemic secondary benzyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid as the alkylation reagent. The benign nature of this process renders this method suitable for late-stage functionalization of complex molecules.
A Facile Approach to the Synthesis of Benzothiazoles from N-Protected Amino Acids
Arfan, M.,Fatima, T.,Mannan, A.,Tahira, A.
, p. 292 - 297 (2020/04/21)
Abstract: –A simple trituration method for the synthesis of 2-substituted benzothiazoles derived from N-protected amino acids and 2-aminothiophenol using molecular iodine as a mild Lewis acid catalyst has been proposed. The reaction occurs in one step for 20–25 min in solve-free conditions and provides the target products in excellent yields.
Asymmetric construction of dihydrobenzofuran-2,5-dione derivatives via desymmetrization of p-quinols with azlactones
Xie, Lihua,Dong, Shunxi,Zhang, Qian,Feng, Xiaoming,Liu, Xiaohua
supporting information, p. 87 - 90 (2019/01/03)
The desymmetrization of p-quinols through a chiral bisguanidinium hemisalt catalyzed enantioselective Michael addition/lactonization cascade reaction with azlactones was reported. 3-Amino-benzofuran-2,5-diones containing a chiral amino acid residue were achieved with up to 99% ee and >19?:?1 dr. An exploration of the structure of the catalyst bisguanidinium was undertaken, revealing a bifunctional catalytic model.
Formation of Non-Natural α,α-Disubstituted Amino Esters via Catalytic Michael Addition
Teegardin, Kip A.,Gotcher, Lacey,Weaver, Jimmie D.
supporting information, p. 7239 - 7244 (2018/11/25)
The enolate monoanion of amino esters is explored, and the first catalytic Michael addition of α-amino esters is demonstrated. These studies indicate that the acidity of the αC-H is the primary factor determining reactivity. Thus, polyfluorophenylglycine amino esters yield novel α-amino esters in the presence of a catalytic amount of a guanidine-derived base and Michael acceptors. Reactivity requires an acidic N-H, which is accomplished using common protecting groups such as N-Bz, N-Boc, and N-Cbz. Calculations and labeling experiments provide insight into the governing principles in which a key C-to-N proton transfer occurs, resulting in an expansion of the scope to include a number of natural amino esters. The study culminates with a late-stage functionalization of peptidic γ-secretase inhibitor, DAPT.
Reactivity of α-Amino Acids in the Reaction with Esters in Aqueous–1,4-Dioxane Media
Kochetova,Kustova,Kuritsyn
, p. 80 - 85 (2018/03/09)
The kinetics of the reaction of a series of α-amino acids with 4-nitrophenyl acetate, 4-nitrophenyl benzoate, and 2,4,6-trinitrophenyl benzoate in aqueous 1,4-dioxane medium has been studied. Kinetics of the reactions involving 4-nitrophenyl acetate and 2,4,6-trinitrophenyl benzoate has complied with the Br?nsted dependence and revealed linear correlation between rate constant logarithm and the energy difference of the frontier orbitals of α-amino acids anions.
Polyfluoroarylation of oxazolones: Access to non-natural fluorinated amino acids
Teegardin, Kip A.,Weaver, Jimmie D.
supporting information, p. 4771 - 4774 (2017/07/06)
Herein, conditions are provided for the formation and use of the oxazolone enolate for the nucleophilic substitution of highly fluorinated (hetero)arenes, which after unmasking yield highly fluorinated non-natural amino acids and derivatives. In addition, the properties and chemical behavior of this new class of amino acids are explored. The utility is demonstrated in the one pot synthesis of medicinally relevant 2-aminohydantoins.
Enantioselective construction of tetrasubstituted stereogenic carbons through bronsted base catalyzed michael reactions: α′-hydroxy enones as key enoate equivalent
Badiola, Eider,Fiser, Bla,Gmez-Bengoa, Enrique,Mielgo, Antonia,Olaizola, Iurre,Urruzuno, Iaki,Garca, Jess M.,Odriozola, Jos M.,Razkin, Jess,Oiarbide, Mikel,Palomo, Claudio
supporting information, p. 17869 - 17881 (2015/02/19)
Catalytic and asymmetric Michael reactions constitute very powerful tools for the construction of new C-C bonds in synthesis, but most of the reports claiming high selectivity are limited to some specific combinations of nucleophile/electrophile compound types, and only few successful methods deal with the generation of all-carbon quaternary stereocenters. A contribution to solve this gap is presented here based on chiral bifunctional Bronsted base (BB) catalysis and the use of α′-oxy enones as enabling Michael acceptors with ambivalent H-bond acceptor/donor character, a yet unreported design element for bidentate enoate equivalents. It is found that the Michael addition of a range of enolizable carbonyl compounds that have previously demonstrated challenging (i.e., α-substituted 2-oxindoles, cyanoesters, oxazolones, thiazolones, and azlactones) to α′-oxy enones can afford the corresponding tetrasubstituted carbon stereocenters in high diastereo- and enantioselectivity in the presence of standard BB catalysts. Experiments show that the α′-oxy ketone moiety plays a key role in the above realizations, as parallel reactions under identical conditions but using the parent α,β-unsaturated ketones or esters instead proceed sluggish and/or with poor stereoselectivity. A series of trivial chemical manipulations of the ketol moiety in adducts can produce the corresponding carboxy, aldehyde, and ketone compounds under very mild conditions, giving access to a variety of enantioenriched densely functionalized building blocks containing a fully substituted carbon stereocenter. A computational investigation to rationalize the mode of substrate activation and the reaction stereochemistry is also provided, and the proposed models are compared with related systems in the literature.
Peptide-catalyzed conversion of racemic oxazol-5(4 H)-ones into enantiomerically enriched α-amino acid derivatives
Metrano, Anthony J.,Miller, Scott J.
, p. 1542 - 1554 (2014/03/21)
We report the development and optimization of a tetrapeptide that catalyzes the methanolytic dynamic kinetic resolution of oxazol-5(4H)-ones (azlactones) with high levels of enantioinduction. Oxazolones possessing benzylic-type substituents were found to perform better than others, providing methyl ester products in 88:12 to 98:2 er. The mechanism of this peptide-catalyzed process was investigated through truncation studies and competition experiments. High-field NOESY analysis was performed to elucidate the solution-phase structure of the peptide, and we present a plausible model for catalysis.
Organocatalyzed asymmetric 1,4-addition of azlactones to α,β-unsaturated trichloromethyl ketones: Synthesis of α,α-disubstituted α-amino acid derivatives
Zhang, Jinlong,Liu, Xihong,Wu, Chongyang,Zhang, Panpan,Chen, Jianbo,Wang, Rui
supporting information, p. 7104 - 7108 (2015/01/16)
The first asymmetric 1,4-addition of azlactones to α,β-unsaturated trichloromethyl ketones catalyzed by cinchona alkaloid derived bifunctional thiourea catalysts was developed. A series of α,α-disubstituted α-amino acid derivatives bearing a quaternary stereocenter at the α-position were obtained in high yields with excellent diastereo- and enantioselectivities (up to -20:1 dr and 99% ee). In addition, the trichloromethyl moiety in these adducts was identified as a good leaving group.
PROLINAMIDE DERIVATIVE AS THROMBIN INHIBITOR, PREPARATION METHOD AND APPLICATION THEREOF
-
Paragraph 0035; 0075, (2013/09/26)
Provided are a compound of formula (I), pharmaceutically acceptable salts thereof, preparation methods and applications thereof for inhibiting thrombin, and applications in the treatment and prevention of thrombin-mediated and thrombin-related diseases.