Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1861-04-7

Post Buying Request

1861-04-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1861-04-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1861-04-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,8,6 and 1 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 1861-04:
(6*1)+(5*8)+(4*6)+(3*1)+(2*0)+(1*4)=77
77 % 10 = 7
So 1861-04-7 is a valid CAS Registry Number.

1861-04-7Downstream Products

1861-04-7Relevant articles and documents

Free radical mechanism investigation of the side-chain alkylation of toluene with methanol on basic zeolites X

Chen, Huanhui,Li, Xiaoci,Zhao, Guoqing,Gu, Hongbo,Zhu, Zhirong

, p. 1726 - 1732 (2015)

The side-chain alkylation of toluene represents a novel, environmentally friendly, and low cost route for the production of styrene. However, the yield of styrene produced in this way is currently low, and the mechanism responsible for the side-chain alky

Reaction of the aromatic olefin 1-(1-hexenyl)-2-thiomethylbenzene with Cp2Zr(H)Cl. Unexpected cleavage of the methyl-sulphur bond

Annby, Ulf,Gronowitz, Salo,Hallberg, Anders

, p. 295 - 302 (1989)

Reaction of the aromatic olefin 1-(1-hexenyl)-2-thiomethylbenzene with Cp2Zr(H)Cl results in cleavage of the sulphur-methyl bond.When the 2-hexylthiophenol thus formed is exposed to air, it is oxidized to the corresponding disulphide, which is produced in

Manganese-Catalyzed Dehydrogenative Silylation of Alkenes following Two Parallel Inner-Sphere Pathways

Weber, Stefan,Glavic, Manuel,St?ger, Berthold,Pittenauer, Ernst,Podewitz, Maren,Veiros, Luis F.,Kirchner, Karl

supporting information, p. 17825 - 17832 (2021/11/04)

We report on an additive-free Mn(I)-catalyzed dehydrogenative silylation of terminal alkenes. The most active precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid Si-H bond cleavage of the silane HSiR3 forming the active 16e- Mn(I) silyl catalyst [Mn(dippe)(CO)2(SiR3)] together with liberated butanal. A broad variety of aromatic and aliphatic alkenes was efficiently and selectively converted into E-vinylsilanes and allylsilanes, respectively, at room temperature. Mechanistic insights are provided based on experimental data and DFT calculations revealing that two parallel reaction pathways are operative: an acceptorless reaction pathway involving dihydrogen release and a pathway requiring an alkene as sacrificial hydrogen acceptor.

Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways

Mendelsohn, Lauren N.,MacNeil, Connor S.,Tian, Lei,Park, Yoonsu,Scholes, Gregory D.,Chirik, Paul J.

, p. 1351 - 1360 (2021/02/01)

The catalytic hydrogenation activity of the readily prepared, coordinatively saturated cobalt(I) precatalyst, (R,R)-(iPrDuPhos)Co(CO)2H ((R,R)-iPrDuPhos = (+)-1,2-bis[(2R,5R)-2,5-diisopropylphospholano]benzene), is described. While efficient turnover was observed with a range of alkenes upon heating to 100 °C, the catalytic performance of the cobalt catalyst was markedly enhanced upon irradiation with blue light at 35 °C. This improved reactivity enabled hydrogenation of terminal, di-, and trisubstituted alkenes, alkynes, and carbonyl compounds. A combination of deuterium labeling studies, hydrogenation of alkenes containing radical clocks, and experiments probing relative rates supports a hydrogen atom transfer pathway under thermal conditions that is enabled by a relatively weak cobalt-hydrogen bond of 54 kcal/mol. In contrast, data for the photocatalytic reactions support light-induced dissociation of a carbonyl ligand followed by a coordination-insertion sequence where the product is released by combination of a cobalt alkyl intermediate with the starting hydride, (R,R)-(iPrDuPhos)Co(CO)2H. These results demonstrate the versatility of catalysis with Earth-abundant metals as pathways involving open-versus closed-shell intermediates can be switched by the energy source.

Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration

Wang, Yong,Cao, Xinyi,Zhao, Leyao,Pi, Chao,Ji, Jingfei,Cui, Xiuling,Wu, Yangjie

supporting information, p. 4119 - 4129 (2020/08/10)

A generalized, simple and efficient transfer hydrogenation of unsaturated bonds has been developed using HBPin and various proton reagents as hydrogen sources. The substrates, including alkenes, alkynes, aromatic heterocycles, aldehydes, ketones, imines, azo, nitro, epoxy and nitrile compounds, are all applied to this catalytic system. Various groups, which cannot survive under the Pd/C/H2 combination, are tolerated. The activity of the reactants was studied and the trends are as follows: styrene'diphenylmethanimine'benzaldehyde'azobenzene'nitrobenzene'quinoline'acetophenone'benzonitrile. Substrates bearing two or more different unsaturated bonds were also investigated and transfer hydrogenation occurred with excellent chemoselectivity. Nano-palladium catalyst in situ generated from Pd(OAc)2 and HBPin extremely improved the TH efficiency. Furthermore, chemoselective anti-Markovnikov hydrodeuteration of terminal aromatic olefins was achieved using D2O and HBPin via in situ HD generation and discrimination. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1861-04-7