Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(R)-2-Chloro-1-(4-methoxyphenyl)ethanol is an organic compound characterized by its chloro and methoxyphenyl functional groups. It is a chiral molecule, with the "R" configuration indicating the specific arrangement of its atoms in space. (R)-2-Chloro-1-(4-methoxyphenyl)ethanol is known for its potential applications in the pharmaceutical industry due to its unique structural features.

186345-05-1 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 186345-05-1 Structure
  • Basic information

    1. Product Name: (R)-2-Chloro-1-(4-methoxyphenyl)ethanol
    2. Synonyms: (R)-2-CHLORO-1-(4-METHOXYPHENYL)ETHANOL
    3. CAS NO:186345-05-1
    4. Molecular Formula: C9H11ClO2
    5. Molecular Weight: 186.64
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 186345-05-1.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 307.7 °C at 760 mmHg
    3. Flash Point: 139.9 °C
    4. Appearance: /
    5. Density: 1.197g/cm3
    6. Refractive Index: N/A
    7. Storage Temp.: 2-8°C
    8. Solubility: N/A
    9. CAS DataBase Reference: (R)-2-Chloro-1-(4-methoxyphenyl)ethanol(CAS DataBase Reference)
    10. NIST Chemistry Reference: (R)-2-Chloro-1-(4-methoxyphenyl)ethanol(186345-05-1)
    11. EPA Substance Registry System: (R)-2-Chloro-1-(4-methoxyphenyl)ethanol(186345-05-1)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 186345-05-1(Hazardous Substances Data)

186345-05-1 Usage

Uses

Used in Pharmaceutical Synthesis:
(R)-2-Chloro-1-(4-methoxyphenyl)ethanol is used as a building block for the synthesis of various pharmaceutical compounds. Its unique structure allows it to be a valuable component in the development of new drugs, particularly those targeting specific biological pathways or receptors.
In the pharmaceutical industry, (R)-2-Chloro-1-(4-methoxyphenyl)ethanol is used as a key intermediate for the development of novel therapeutic agents. The compound's structural diversity and chirality make it an attractive candidate for the creation of enantiomerically pure drugs, which can exhibit different pharmacological properties and reduce potential side effects associated with racemic mixtures.
Additionally, the compound's functional groups, such as the chlorine atom and the methoxy group, can be further modified or used as starting points for the synthesis of more complex molecules with specific biological activities. This makes (R)-2-Chloro-1-(4-methoxyphenyl)ethanol a versatile and valuable asset in the ongoing search for new and effective pharmaceuticals.

Check Digit Verification of cas no

The CAS Registry Mumber 186345-05-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,8,6,3,4 and 5 respectively; the second part has 2 digits, 0 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 186345-05:
(8*1)+(7*8)+(6*6)+(5*3)+(4*4)+(3*5)+(2*0)+(1*5)=151
151 % 10 = 1
So 186345-05-1 is a valid CAS Registry Number.

186345-05-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (1R)-2-chloro-1-(4-methoxyphenyl)ethanol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:186345-05-1 SDS

186345-05-1Relevant articles and documents

Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of a Thermodynamically-Driven Cascade toward Optically Active Halohydrins

Escot, Lorena,González-Granda, Sergio,Gotor-Fernández, Vicente,Lavandera, Iván

, p. 2552 - 2560 (2022/02/16)

A concurrent cascade combining the use of a gold(I) N-heterocyclic carbene (NHC) and an alcohol dehydrogenase (ADH) is disclosed for the synthesis of highly valuable enantiopure halohydrins in an aqueous medium and under mild reaction conditions. The meth

Electro-mediated PhotoRedox Catalysis for Selective C(sp3)–O Cleavages of Phosphinated Alcohols to Carbanions

Barham, Joshua P.,K?nig, Burkhard,Karl, Tobias A.,Reiter, Sebastian,Tian, Xianhai,Yakubov, Shahboz,de Vivie-Riedle, Regina

supporting information, p. 20817 - 20825 (2021/08/18)

We report a novel example of electro-mediated photoredox catalysis (e-PRC) in the reductive cleavage of C(sp3)?O bonds of phosphinated alcohols to alkyl carbanions. As well as deoxygenations, olefinations are reported which are E-selective and can be made Z-selective in a tandem reduction/photosensitization process where both steps are photoelectrochemically promoted. Spectroscopy, computation, and catalyst structural variations reveal that our new naphthalene monoimide-type catalyst allows for an intimate dispersive precomplexation of its radical anion form with the phosphinate substrate, facilitating a reactivity-determining C(sp3)?O cleavage. Surprisingly and in contrast to previously reported photoexcited radical anion chemistries, our conditions tolerate aryl chlorides/bromides and do not give rise to Birch-type reductions.

Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization

Fonseca, Thiago de Sousa,Vega, Kimberly Benedetti,da Silva, Marcos Reinaldo,de Oliveira, Maria da Concei??o Ferreira,de Lemos, Telma Leda Gomes,Contente, Martina Letizia,Molinari, Francesco,Cespugli, Marco,Fortuna, Sara,Gardossi, Lucia,de Mattos, Marcos Carlos

, (2020/02/18)

Racemic phenylethyl halohydrins acetates containing several groups attached to the aromatic ring were resolved via hydrolysis reaction in the presence of lipase B from Candida antarctica (Novozym 435). In all cases, the kinetic resolution was highly selective (E > 200) leading to the corresponding (S)-β-halohydrin with ee > 99 %. However, the time required for an ideal 50 % conversion ranged from 15 min for 2,4-dichlorophenyl chlorohydrin acetate to 216 h for 2-chlorophenyl bromohydrin acetate. Six chlorohydrins and five bromohydrins were evaluated, the latter being less reactive. For the β-brominated substrates, steric hindrance on the aromatic ring played a crucial role, which was not observed for the β-chlorinated derivatives. To shed light on the different reaction rates, docking studies were carried out with all the substrates using MD simulations. The computational data obtained for the β-brominated substrates, based on the parameters analysed such as NAC (near attack conformation), distance between Ser-O and carbonyl-C and oxyanion site stabilization were in agreement with the experimental results. On the other hand, the data obtained for β-chlorinated substrates suggested that physical aspects such as high hydrophobicity or induced change in the conformation of the enzymatic active site are more relevant aspects when compared to steric hindrance effects.

Organomagnesium Based Flash Chemistry: Continuous Flow Generation and Utilization of Halomethylmagnesium Intermediates

Von Keutz, Timo,Cantillo, David,Kappe, C. Oliver

supporting information, p. 7537 - 7541 (2020/10/12)

The generation of highly unstable chloromethylmagnesium chloride in a continuous flow reactor and its reaction with aldehydes and ketones is reported. With this strategy, chlorohydrins and epoxides were synthesized within a total residence time of only 2.6 s. The outcome of the reaction can be tuned by simply using either a basic or an acidic quench. Very good to excellent isolated yields, up to 97%, have been obtained for most cases (30 examples).

Deep Eutectic Solvents as Media in Alcohol Dehydrogenase-Catalyzed Reductions of Halogenated Ketones

Ibn Majdoub Hassani, Fatima Zohra,Amzazi, Saaid,Kreit, Joseph,Lavandera, Iván

, p. 832 - 836 (2019/12/24)

The application of deep eutectic solvents (DESs) in biotechnological processes has gained an outstanding relevance, as they can be used as greener media to obtain higher productivities and selectivities. In the present contribution, an eutectic mixture composed of choline chloride (ChCl): glycerol (1 : 2 mol/mol) has been used as a reaction medium in combination with Tris?SO4 50 mM buffer pH 7.5, applied to the alcohol dehydrogenase (ADH)-catalyzed reduction of various carbonyl precursors of chiral halohydrins. These alcohols are key intermediates of biologically active compounds, and hence they are of industrial interest. In the presence of up to 50 % v/v of DES, these biotransformations were achieved up to 300–400 mM of the α-halogenated ketone substrate, getting access to the final compounds with excellent conversions (usually >90 %) and enantiomeric excess (ee >99 %). Among the different ADHs tested, two stereocomplementary enzymes (Lactobacillus brevis ADH and Rhodococcus ruber ADH) afforded the best results, so both alcohol enantiomers could be obtained in all the studied examples. Selected bioreductions were scaled up to 250 mg and 1 g, demonstrating the potential that DESs can offer as media in redox processes for substrates with low solubility in water.

A new entry of highly selective and nucleophilic BrH2C-and CLH2c-titanium complexes for carbonyl coupling

Yan, Tu Hsin,Ananthan, Bakthavachalam,Chang, Su Haur

, p. 778 - 787 (2019/01/24)

The direct coupling of various aldehydes and ketones with CH2Br2 or CH2Cl2 promoted by TiCl4-Mg bimetallic complex provides an extremely simple, practical, and efficient approach for the construction of bromomethyl or chloromethyl carbinols. The high chemoselectivity of this chemistry is illus-trated by the TiCl4-Mg-promoted selective coupling of CH2Br2 or CH2Cl2 with an aldehyde in the presence of ketone and selective transfer of CH2Br or CH2Cl to saturated carbonyl moiety. This protocol is also suitable for sterically hindered and enoliza-ble carbonyl compounds.

Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins

Yin, Congcong,Wu, Weilong,Hu, Yang,Tan, Xuefeng,You, Cai,Liu, Yuanhua,Chen, Ziyi,Dong, Xiu-Qin,Zhang, Xumu

supporting information, p. 2119 - 2124 (2018/04/30)

Iridium-catalyzed asymmetric hydrogenation of prochiral halogenated ketones was successfully developed to prepare various chiral halohydrins with high reactivities and excellent enantioselectivities under basic reaction condition (up to >99% conversion, 99% yield, >99% ee). Moreover, gram-scale experiment was performed well in the presence of just 0.005 mol% (S/C=20 000) Ir/f-amphox catalyst with 99% yield and >99% ee. (Figure presented.).

Ultrafast Iron-Catalyzed Reduction of Functionalized Ketones: Highly Enantioselective Synthesis of Halohydrines, Oxaheterocycles, and Aminoalcohols

Blasius, Clemens K.,Vasilenko, Vladislav,Gade, Lutz H.

supporting information, p. 10231 - 10235 (2018/07/31)

A molecularly defined chiral boxmi iron alkyl complex catalyzes the hydroboration of various functionalized ketones and provides the corresponding chiral halohydrines, oxaheterocycles (oxiranes, oxetanes, tetrahydrofurans, and dioxanes) and amino alcohols with excellent enantioselectivities (up to >99 %ee) and conversion efficiencies at low catalyst loadings (as low as 0.5 mol %). Turnover frequencies of greater than 40000 h?1 at ?30 °C highlight the activity of this earth-abundant metal catalyst which tolerates a large number of functional groups.

Selective Asymmetric Transfer Hydrogenation of α-Substituted Acetophenones with Bifunctional Oxo-Tethered Ruthenium(II) Catalysts

Yuki, Yamato,Touge, Taichiro,Nara, Hideki,Matsumura, Kazuhiko,Fujiwhara, Mitsuhiko,Kayaki, Yoshihito,Ikariya, Takao

supporting information, p. 568 - 574 (2017/12/13)

A practical method for the asymmetric transfer hydrogenation of α-substituted ketones was developed utilizing oxo-tethered N-sulfonyldiamine-ruthenium complexes. Reduction by HCO2H and HCO2K in a mixed solvent of EtOAc/H2O allowed for the selective synthesis of halohydrins from 2-bromoacetophenone (98%) and 2-chloroacetophenone (>99%), leading to suppressed undesired side reactions stemming from formylation under the typical reaction conditions using an azeotropic 5:2 mixture of HCO2H and Et3N. A range of functional groups, such as halogens, methoxy, nitro, dimethylamino, and ester groups, were well tolerated, highlighting the potential of this method. Nearly complete selectivity with a preferable ee was maintained even with a substrate/catalyst (S/C) ratio of 5000. This catalyst system was also effective for the asymmetric reduction of α-sulfonated ketones without eroding the leaving group. (Figure presented.).

Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions

Lopez, Sarah,Rondot, Laurianne,Leprêtre, Chloé,Marchi-Delapierre, Caroline,Ménage, Stéphane,Cavazza, Christine

supporting information, p. 17994 - 18002 (2017/12/26)

Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon-carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of "omic" technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 186345-05-1