Welcome to LookChem.com Sign In|Join Free

CAS

  • or

19792-91-7

Post Buying Request

19792-91-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

19792-91-7 Usage

Synthesis Reference(s)

Synthesis, p. 357, 1978 DOI: 10.1055/s-1978-24740

Check Digit Verification of cas no

The CAS Registry Mumber 19792-91-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,9,7,9 and 2 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 19792-91:
(7*1)+(6*9)+(5*7)+(4*9)+(3*2)+(2*9)+(1*1)=157
157 % 10 = 7
So 19792-91-7 is a valid CAS Registry Number.

19792-91-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name Phenyl sulfamate

1.2 Other means of identification

Product number -
Other names Amidosulfonsaeurephenylester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:19792-91-7 SDS

19792-91-7Related news

Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic Phenyl sulfamate (cas 19792-91-7) motifs09/27/2019

Several model mechanism-based inhibitors (MbIs) were designed and evaluated for their ability to inhibit sulfatases. The MbI motifs were based on simple aromatic sulfates, which are known to be commonly accepted substrates across this highly conserved enzyme class, so that they might be generall...detailed

19792-91-7Relevant articles and documents

Inhibition of carbonic anhydrase-II by sulfamate and sulfamide groups: An investigation involving direct thermodynamic binding measurements

Klinger, Alexandra L.,McComsey, David F.,Smith-Swintosky, Virginia,Shank, Richard P.,Maryanoff, Bruce E.

, p. 3496 - 3500 (2006)

This paper examines the relative effectiveness of bioisosteric sulfamate and sulfamide derivatives for inhibition of human carbonic anhydrase-II (CA-II) by using a direct binding assay based on the ThermoFluor method (Matulis et al. Biochemistry 2005, 44, 5258). Compounds 1-10, which represent five cognate sulfamate/ sulfamide pairs, were studied by ThermoFluor to obtain binding affinities (Ka values). The corresponding dissociation constants, Kd, provide an independent measure of CA-II activity relative to commonly used Ki values from enzyme kinetics studies. There was a sizable difference in potency between the sulfamates and sulfamides, with the sulfamides being much less potent, by factors ranging from 25 (7/8) to 1200 (3/4), These results are consistent with our recent report that sulfamides tend to be much weaker inhibitors of CA-II than their corresponding sulfamates (Maryanoff et al. J. Med. Chem. 2005, 48, 1941). Additionally, for arylsulfamides 10-12 the Kd values determined by ThermoFluor and the Ki values determined from enzyme kinetics are consistent. It appears that the sulfamide group is less suitable than the sulfamate group for obtaining potent inhibition of CA-II.

N-Sulfonylcarboxamide as an Oxidizing Directing Group for Ruthenium-Catalyzed C–H Activation/Annulation

Petrova, Elina,Rasina, Dace,Jirgensons, Aigars

supporting information, p. 1773 - 1779 (2017/04/13)

N-Sulfonylcarboxamides can act as both a directing group for C–H activation and an internal oxidant in the Ru-catalyzed annulation reaction with alkynes to give isoquinolones. Of all of the N-sulfonylcarboxamides that were studied, the N-(2,6-difluorophenyl)sulfonamide derivatives were found to be the most efficient and led to the formation of an unstable sulfinate byproduct that decomposed into 1,3-difluorobenzene under the reaction conditions. The described isoquinolone synthesis provides an alternative to the currently known traceless annulations of hydroxamic acid and sulfoximine derivatives.

Selective intermolecular amination of C-H bonds at tertiary carbon centers

Roizen, Jennifer L.,Zalatan, David N.,Du Bois

supporting information, p. 11343 - 11346 (2013/11/06)

C-H insertion: A method for intermolecular amination of tertiary C-H bonds is described that uses limiting amounts of substrate and a convenient phenol-derived nitrogen source. Structure-selectivity and mechanistic studies suggest that steric interaction between the substrate and active oxidant is the principal determinant of product selectivity. Copyright

Intermolecular amination of allyl alcohols with sulfamates: Effective utilization of mercuric catalyst

Yamamoto, Hirofumi,Ho, Elisabeth,Sasaki, Ikuo,Mitsutake, Mizuho,Takagi, Yuichi,Imagawa, Hiroshi,Nishizawa, Mugio

supporting information; experimental part, p. 2417 - 2420 (2011/06/10)

Herein, we describe the intermolecular amination of allyl alcohols with sulfamates, which have been underutilized as nitrogen nucleophiles for allylic amination. Methyl sulfamate is a good nucleophile in the presence of mercuric triflate and efficiently generates monoallylation products in excellent yield at room temperature. Furthermore, the solid-supported mercuric catalyst silaphenyl mercuric triflate also showed remarkable catalytic activity for the allylic amination. Intermolecular amination of allyl alcohol with sulfamate as a modifiable nitrogen nucleophile is presented. Mercuric reagents act as highly efficient catalyst for the allylic amination, and the procedure was applied to the preparation of various amine derivatives. In many cases, the reaction can be carried out at room temperature and is applicable to a large range of allylic alcohols to give the monoallylated products in excellent yield. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 19792-91-7