2158-02-3Relevant articles and documents
Large-scale asymmetric synthesis of a cathepsin S inhibitor
Lorenz, Jon C.,Busacca, Carl A.,Feng, XuWu,Grinberg, Nelu,Haddad, Nizar,Johnson, Joe,Kapadia, Suresh,Lee, Heewon,Saha, Anjan,Sarvestani, Max,Spinelli, Earl M.,Varsolona, Rich,Wei, Xudong,Zeng, Xingzhong,Senanayake, Chris H.
, p. 1155 - 1161 (2010)
(Chemical Equation Presented) A potent reversible inhibitor of the cysteine protease cathepsin-S was prepared on large scale using a convergent synthetic route, free of chromatography and cryogenics. Late-stage peptide coupling of a chiral urea acid fragment with a functionalized aminonitrile was employed to prepare the target, using 2-hydroxypyridine as a robust, nonexplosive replacement for HOBT. The two key intermediates were prepared using a modified Strecker reaction for the aminonitrile and a phosphonation-olefinationrhodium- catalyzed asymmetric hydrogenation sequence for the urea. A palladium-catalyzed vinyl transfer coupled with a Claisen reaction was used to produce the aldehyde required for the side chain.Key scale up issues, safety calorimetry, and optimization of all steps for multikilogram production are discussed.
Efficient Synthesis of Benzothiazinone Analogues with Activity against Intracellular Mycobacterium tuberculosis
Av-Gay, Yossef,Imming, Peter,Narula, Gagandeep,Richter, Adrian,Rudolph, Ines,Wagner, Christoph,Seidel, Rüdiger W.
supporting information, (2021/12/27)
8-Nitrobenzothiazinones (BTZs) are a promising class of antimycobacterial agents currently under investigation in clinical trials. Starting from thiourea derivatives, a new synthetic pathway to BTZs was established. It allows the formation of the thiazinone ring system in one synthetic step and is applicable for preparation of a wide variety of BTZ analogues. The synthetic procedure furthermore facilitates the replacement of the sulphur atom in the thiazinone ring system by oxygen or nitrogen to afford the analogous benzoxazinone and quinazolinone systems. 36 BTZ analogues were prepared and tested in luminescence-based assays for in vitro activity against Mycobacterium tuberculosis (Mtb) using the microdilution broth method and a high-throughput macrophage infection assay.
Catalytic hydration of cyanamides with phosphinous acid-based ruthenium(ii) and osmium(ii) complexes: scope and mechanistic insights
álvarez, Daniel,Cadierno, Victorio,Crochet, Pascale,González-Fernández, Rebeca,López, Ramón,Menéndez, M. Isabel
, p. 4084 - 4098 (2020/07/09)
The synthesis of a large variety of ureas R1R2NC(O)NH2 (R1 and R2 = alkyl, aryl or H; 26 examples) was successfully accomplished by hydration of the corresponding cyanamides R1R2NCN using the phosphinous acid-based complexes [MCl2(η6-p-cymene)(PMe2OH)] (M = Ru (1), Os (2)) as catalysts. The reactions proceeded cleanly under mild conditions (40-70 °C), in the absence of any additive, employing low metal loadings (1 molpercent) and water as the sole solvent. In almost all the cases, the osmium complex 2 featured a superior reactivity in comparison to that of its ruthenium counterpart 1. In addition, for both catalysts, the reaction rates observed for the hydration of the cyanamide substrates were remarkably faster than those involving classical aliphatic and aromatic nitriles. Computational studies allowed us to rationalize all these trends. Thus, the calculations indicated that the presence of a nitrogen atom directly linked to the CN bond depopulates electronically the nitrile carbon by inductive effect when coordinated to the metal center, thus favouring the intramolecular nucleophilic attack of the OH group of the phosphinous acid ligand to this carbon. On the other hand, the higher reactivity of Os vs. Ru seems to be related with the lower ring strain on the incipient metallacycle that starts to form in the transition state associated with this key step in the catalytic cycle. Indirect experimental evidence of the generation of the metallacyclic intermediates was obtained by studying the reactivity of [RuCl2(η6-p-cymene)(PMe2OH)] (1) towards dimethylcyanamide in methanol and ethanol. The reactions afforded compounds [RuCl(η6-p-cymene)(PMe2OR)(NCNMe2)][SbF6] (R = Me (5a), Et (5b)), resulting from the alcoholysis of the metallacycle, which could be characterized by single-crystal X-ray diffraction. This journal is
An efficient one-pot synthesis of industrially valuable primary organic carbamates and: N -substituted ureas by a reusable Merrifield anchored iron(ii)-anthra catalyst [FeII(Anthra-Merf)] using urea as a sustainable carbonylation source
Basu, Priyanka,Dey, Tusar Kanto,Ghosh, Aniruddha,Biswas, Surajit,Khan, Aslam,Islam, Sk. Manirul
, p. 2630 - 2643 (2020/02/20)
An efficient synthesis of primary carbamates and N-substituted ureas is explored with a newly developed heterogeneous polymer supported iron catalyst in the presence of a sustainable carbonylation source. The Merrifield anchored iron(ii)-anthra catalyst [FeII(Anthra-Merf)] was synthesized by functionalization of Merrifield polymer followed by grafting of iron metal. The catalyst [FeII(Anthra-Merf)] was characterized by several techniques, like SEM, EDAX, TGA, PXRD, XPS, FTIR, CHN, AAS and UV-Vis analysis. The designed polymer embedded [FeII(Anthra-Merf)] complex is a remarkably successful catalyst for the synthesis of primary organic carbamates and N-substituted ureas by using safe carbonylation agent urea with different derivatives of alcohols and amines, respectively. The reported catalyst is a potential candidate towards contributing a satisfactory yield of isolated products under suitable reaction conditions. The catalyst is recyclable and almost non-leaching in nature after six runs with an insignificant drop in catalytic activity. Thus we found an economical and viable catalyst [FeII(Anthra-Merf)] for primary carbamates and N-substituted urea synthesis under moderate reaction conditions.
Regioselective Formal [3+2] Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation
Wu, Fan,Alom, Nur-E,Ariyarathna, Jeewani P.,Na?, Johannes,Li, Wei
supporting information, p. 11676 - 11680 (2019/07/31)
A new class of intermolecular olefin aminooxygenation reaction is described. This reaction utilizes the classic halonium intermediate as a regio- and stereochemical template to accomplish the selective oxyamination of both activated and unactivated alkenes. Notably, urea chemical feedstock can be directly introduced as the N and O source and a simple iodide salt can be utilized as the catalyst. This formal [3+2] cycloaddition process provides a highly modular entry to a range of useful heterocyclic products with excellent selectivity and functional-group tolerance.
Solid dispersions containing an apoptosis-inducing agent
-
Page/Page column 286, (2019/03/15)
A pro-apoptotic solid dispersion comprises, in essentially non-crystalline form, a Bcl-2 family protein inhibitory compound of Formula I as defined herein, dispersed in a solid matrix that comprises (a) a pharmaceutically acceptable water-soluble polymeric carrier and (b) a pharmaceutically acceptable surfactant. A process for preparing such a solid dispersion comprises dissolving the compound, the polymeric carrier and the surfactant in a suitable solvent, and removing the solvent to provide a solid matrix comprising the polymeric carrier and the surfactant and having the compound dispersed in essentially non-crystalline form therein. The solid dispersion is suitable for oral administration to a subject in need thereof for treatment of a disease characterized by overexpression of one or more anti-apoptotic Bcl-2 family proteins, for example cancer.
Superparamagnetic Fe3O4 Nanoparticles in a Deep Eutectic Solvent: An Efficient and Recyclable Catalytic System for the Synthesis of Primary Carbamates and Monosubstituted Ureas
Inaloo, Iman Dindarloo,Majnooni, Sahar,Esmaeilpour, Mohsen
, p. 3481 - 3488 (2018/07/29)
Superparamagnetic Fe3O4 nanoparticles were used to synthesize various primary carbamates as well as monosubstituted and N,N-disubstituted ureas. This efficient phosgene-free process used urea as an eco-friendly carbonyl source in the presence of a biocompatible deep eutectic solvent (DES) to provide an inexpensive and attractive route that afforded the products in moderate to excellent yields. The employed DES serves both a catalytic role and as the green reaction medium. The magnetic nanocatalyst and DES can been reused several times without a significant loss of activity.
A practically simple, catalyst free and scalable synthesis of: N -substituted ureas in water
Tiwari, Lata,Kumar, Varun,Kumar, Bhuvesh,Mahajan, Dinesh
, p. 21585 - 21595 (2018/06/26)
A practically simple, mild and efficient method is developed for the synthesis of N-substituted ureas by nucleophilic addition of amines to potassium isocyanate in water without organic co-solvent. Using this methodology, a variety of N-substituted ureas (mono-, di- and cyclic-) were synthesized in good to excellent yields with high chemical purity by applying simple filtration or routine extraction procedures avoiding silica gel purification. The developed methodology was also found to be suitable for gram scale synthesis of molecules having commercial application in large volumes. The identified reaction conditions were found to promote a unique substrate selectivity from a mixture of two amines.
Iron-catalyzed reaction of urea with alcohols and amines: A safe alternative for the synthesis of primary carbamates
Pe?a-López, Miguel,Neumann, Helfried,Beller, Matthias
, p. 2233 - 2238 (2017/07/25)
A general study of the iron-catalyzed reaction of urea with nucleophiles is here presented. The carbamoylation of alcohols allows for the synthesis of N-unsubstituted (primary) carbamates, including present drugs (Felbamate and Meprobamat, without the necessity to apply phosgene and related derivatives. Using amines as nucleophiles gave rise to the respective mono-and disubstituted ureas via selective transamidation reaction. These atom-economical transformations provide a direct and selective access to valuable compounds from cheap and readily available urea using a simple Lewis-acidic iron(Icatalyst.
COMPOSITIONS COMPRISING AND METHODS OF USING INHIBITORS OF SODIUM-GLUCOSE COTRANSPORTERS 1 AND 2
-
, (2012/07/14)
Pharmaceutical dosage forms useful for improving the cardiovascular and/or metabolic health of patients, particularly those suffering from type 2 diabetes, are disclosed, as well as methods of their manufacture.