13078-21-2Relevant articles and documents
Modulation of DNA damage response by targeting ATM kinase using newly synthesized di-phenoxy acetamide (DPA) analogs to induce anti-neoplasia
Al-Ostoot, Fares Hezam,Sherapura, Ankith,Malojirao, Vikas H.,Thirusangu, Prabhu,Al-Muhimeed, Tahani I.,Khanum, Shaukath Ara,Prabhakar
, p. 1344 - 1360 (2021/06/14)
Background: Imbalance and instability in the structure of the DNA have become major characteristics of cancer. In response to DNA damage, DNA damage response (DDR) protein, ataxia telangiectasia mutated (ATM), plays a pivotal role in the modulation of regulatory regions responsible for inhibition of apoptosis, thereby neoplastic progression. Methods: A new series of DPA (7a–t) were synthesized, characterized. Anti-proliferative studies to identify the lead compound were carried out by LDH and MTT assay. Apoptosis/DNA damage was measured through FACS, Annexin-v staining, TUNEL and Comet assay. Elucidation of molecular mechanism through immunoblot and further validation of the drug effect through in vivo approaches. Results: Initial in vitro anti-proliferative screening of Compounds DPA (7a–t) against multiple cancer cell lines identified Compound DPA (7n) as a potent cytotoxic molecule with IC50 value of 4.3?μM. Down the line, in vitro and in vivo evaluation of Compound DPA (7n) inferred that it has apoptotic inducing potentiality. Further, evaluation of molecular mechanism inferred that Compound DPA (7n) effectively modulates ATM phosphorylation only, eventually altering downstream signalling pathways. Conclusions: Compound DPA (7n) emerged as a potent proapoptotic and anti-neoplastic agent by inhibiting ATM kinase activity both in vitro and in vivo. The conferring results ascertain that the drug could be developed as a new ATM kinase inhibitor with anti-cancer capacity. Graphic abstract: [Figure not available: see fulltext.]
Targeting HIF-1α by newly synthesized Indolephenoxyacetamide (IPA) analogs to induce anti-angiogenesis-mediated solid tumor suppression
Al-Ostoot, Fares Hezam,Sherapura, Ankith,V, Vigneshwaran,Basappa, Giridhara,H.K, Vivek,B.T, Prabhakar,Khanum, Shaukath Ara
, p. 1328 - 1343 (2021/05/03)
Background: Hypoxic microenvironment is a common feature of solid tumors, which leads to the promotion of cancer. The transcription factor, HIF-1α, expressed under hypoxic conditions stimulates tumor angiogenesis, favoring HIF-1α as a promising anticancer agent. On the other hand, synthetic Indolephenoxyacetamide derivatives are known for their pharmacological potentiality. With this background here, we have synthesized, characterized, and validated the new IPA (8a–n) analogs for anti-tumor activity. Methods: The new series of IPA (8a–n) were synthesized through a multi-step reaction sequence and characterized based on the different spectroscopic analysis FT-IR, 1H, 13C NMR, mass spectra, and elemental analyses. Cell-based screening of IPA (8a–n) was assessed by MTT assay. Anti-angiogenic efficacy of IPA (8k) validated through CAM, Rat corneal, tube formation and migration assay. The underlying molecular mechanism is validated through zymogram and IB studies. The in vivo anti-tumor activity was measured in the DLA solid tumor model. Results: Screening for anti-proliferative studies inferred, IPA (8k) is a lead molecule with an IC50 value of ?5?μM. Anti-angiogenic assays revealed the angiopreventive activity through inhibition of HIF-1α and modulation downstream regulatory genes, VEGF, MMPs, and P53. The results are confirmative in an in vivo solid tumor model. Conclusion: The IPA (8k) is a potent anti-proliferative molecule with anti-angiogenic activity and specifically targets HIF1α, thereby modulates its downstream regulatory genes both in vitro and in vivo. The study provides scope for new target-specific drug development against HIF-1α for the treatment of solid tumors. Graphic abstract: [Figure not available: see fulltext.].
Sequential Cleavage of Lignin Systems by Nitrogen Monoxide and Hydrazine
Altmann, Lisa-Marie,Heinrich, Markus R.,Hofmann, Dagmar,Hofmann, Laura Elena,Prusko, Lea
supporting information, (2020/03/27)
The cleavage of representative lignin systems has been achieved in a metal-free two-step sequence first employing nitrogen monoxide for oxidation followed by hydrazine for reductive C?O bond scission. In combining nitrogen monoxide and lignin, the newly developed valorization strategy shows the particular feature of starting from two waste materials, and it further exploits the attractive conditions of a Wolff-Kishner reduction for C?O bond cleavage for the first time. (Figure presented.).
Br?nsted Acid Catalyzed Tandem Defunctionalization of Biorenewable Ferulic acid and Derivates into Bio-Catechol
Bal, Mathias,Bomon, Jeroen,Liao, Yuhe,Maes, Bert U. W.,Sels, Bert F.,Sergeyev, Sergey,Van Den Broeck, Elias,Van Speybroeck, Veronique
supporting information, p. 3063 - 3068 (2020/02/05)
An efficient conversion of biorenewable ferulic acid into bio-catechol has been developed. The transformation comprises two consecutive defunctionalizations of the substrate, that is, C?O (demethylation) and C?C (de-2-carboxyvinylation) bond cleavage, occurring in one step. The process only requires heating of ferulic acid with HCl (or H2SO4) as catalyst in pressurized hot water (250 °C, 50 bar N2). The versatility is shown on a variety of other (biorenewable) substrates yielding up to 84 % di- (catechol, resorcinol, hydroquinone) and trihydroxybenzenes (pyrogallol, hydroxyquinol), in most cases just requiring simple extraction as work-up.
Cobalt Nanoparticles-Catalyzed Widely Applicable Successive C?C Bond Cleavage in Alcohols to Access Esters
Dai, Wen,Gao, Shuang,Li, Guosong,Luo, Huihui,Lv, Ying,Shang, Sensen,Wang, Lianyue
supporting information, p. 19268 - 19274 (2020/08/26)
Selective cleavage and functionalization of C?C bonds have important applications in organic synthesis and biomass utilization. However, functionalization of C?C bonds by controlled cleavage remains difficult and challenging because they are inert. Herein, we describe an unprecedented efficient protocol for the breaking of successive C?C bonds in alcohols to form esters with one or multiple carbon atoms less using heterogeneous cobalt nanoparticles as catalyst with dioxygen as the oxidant. A wide range of alcohols including inactive long-chain alkyl aryl alcohols undergo smoothly successive cleavage of adjacent ?(C?C)n? bonds to afford the corresponding esters. The catalyst was used for seven times without any decrease in activity. Characterization and control experiments disclose that cobalt nanoparticles are responsible for the successive cleavage of C?C bonds to achieve excellent catalytic activity, while the presence of Co-Nx has just the opposite effect. Preliminary mechanistic studies reveal that a tandem sequence reaction is involved in this process.
CATALYTIC DEPOLYMERIZATION OF LIGNIN TO HIGH VALUE HYDROCARBONS
-
Page/Page column 20; 21, (2021/01/23)
The present disclosure provides for methods for depolymerizing lignin to produce other useful products. For example, low molecular weight aromatic and aliphatic hydrocarbons (e.g., hydrocarbons having 8 to 20 carbon atoms (C8 to C20 hydrocarbons)) as well as oil products can be produced using methods of the present disclosure. The method can include treatment of the lignin using a catalyst composition, where the catalyst composition comprises a persulfate salt and a transition metal catalyst.
Transition-metal-free conversion of lignin model compounds to high-value aromatics: Scope and chemoselectivity
Lee, Tae Woo,Yang, Jung Woon
, p. 3761 - 3771 (2018/08/21)
An efficient and straightforward reaction protocol for the conversion of lignin model compounds was developed based on a simple system consisting of a base, oxygen, and a green solvent under mild conditions in the absence of metals. This protocol was successfully applied to the cleavage of both 'β-O-4' dimeric and trimeric compounds, and a controlled selective degradation was achieved depending on the bond type. The feasibility of this method to provide aromatic compounds in high yields from lignin by a sequential oxidative dehomologation reaction was clearly demonstrated.
Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs
Zhang, Jia-Wei,Lu, Guo-Ping,Cai, Chun
, p. 4538 - 4543 (2017/10/13)
A MIL-100(Fe) supported Pd-Ni BMNP catalyst has been fabricated, and the catalyst exhibits superior catalytic performance toward the intramolecular transfer hydrogenolysis of lignin model compounds and organosolv lignin. Alcoholic groups (CαH-OH) of lignin were exploited as the hydrogen source, and selective cleavage of β-O-4 linkages in lignin was realized without an extra hydrogen donor. This protocol was suitable for organosolv lignin as well as model compounds; several phenols and functionalized acetophenones were detected when extracted lignin was treated in our system. The catalyst exhibits outstanding catalytic stability during the reaction process, which can be ascribed to the porous structure and the strong water stability of MIL-100(Fe). The excellent catalytic performance of Pd1Ni4/MIL-100(Fe) highlights the "synergistic effect" between the BMNPs and the functional synergy between MNPs and MOFs, and our work shows the bright future of BMNPs and MOFs in the development of catalysts for sustainable chemistry.
Isoflavone amide derivatives, their preparation method and medical use
-
Paragraph 0059; 0069; 0070; 0071, (2017/08/31)
The invention belongs to the field of medicinal chemistry, and relates to derivatives of isoflavones amides, as well as a preparation method and medical application of derivatives, in particular to the derivatives of the isoflavones amides with the general formula of (I) shown as the specification, the preparation method and the medical application of the derivatives, particularly the application of the derivatives of the isoflavones amides serving as medicaments for preventing or treating hyperlipemia, adiposis or type-II diabetes.
Photocatalytic Oxidation of Lignin Model Systems by Merging Visible-Light Photoredox and Palladium Catalysis
K?rk?s, Markus D.,Bosque, Irene,Matsuura, Bryan S.,Stephenson, Corey R. J.
supporting information, p. 5166 - 5169 (2016/10/14)
Lignin valorization has long been recognized as a sustainable solution for the renewable production of aromatic compounds. Two-step oxidation/reduction strategies, whereby the first oxidation step is required to "activate" lignin systems for controlled fragmentation reactions, have recently emerged as viable routes toward this goal. Herein we describe a catalytic protocol for oxidation of lignin model systems by combining photoredox and Pd catalysis. The developed dual catalytic protocol allowed the efficient oxidation of lignin model substrates at room temperature to afford the oxidized products in good to excellent yields.