Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27645-60-9

Post Buying Request

27645-60-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27645-60-9 Usage

Preparation

Obtained by reaction of 4-methoxybenzoyl chloride with acetonitrile in the –presence of aluminium chloride in carbon disulfide at r.t. for 3 h (35%).

Check Digit Verification of cas no

The CAS Registry Mumber 27645-60-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,6,4 and 5 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 27645-60:
(7*2)+(6*7)+(5*6)+(4*4)+(3*5)+(2*6)+(1*0)=129
129 % 10 = 9
So 27645-60-9 is a valid CAS Registry Number.
InChI:InChI=1/C15H11NO2/c1-18-14-8-6-13(7-9-14)15(17)12-4-2-11(10-16)3-5-12/h2-9H,1H3

27645-60-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-(4-methoxybenzoyl)benzonitrile

1.2 Other means of identification

Product number -
Other names 4-[(4-Methoxyphenyl)carbonyl]benzonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27645-60-9 SDS

27645-60-9Relevant articles and documents

Tetra- And Dinuclear Palladium Complexes Based on a Ligand of 2,8-Di-2-pyridinylanthyridine: Preparation, Characterization, and Catalytic Activity

Lin, Shih-Chieh Aaron,Liu, Shiuh-Tzung,Liu, Yi-Hung,Peng, Shie-Ming,Su, Bo-Kai

, p. 2081 - 2089 (2021/07/26)

Complexation of L [L = 5-phenyl-2,8-di-2-pyridinyl-anthyridine] with [Pd(CH3CN)4](BF4)2 and [Pd(CH3CN)3Cl](BF4) in a molar ratio of 1:2 rendered the corresponding dinuclear complexes [Pd2L (CH3CN)4](BF4)4 (1) and [Pd2L (CH3CN)2Cl2](BF4)2 (2), respectively. However, treatment of L with (COD)PdCl2 followed by anion exchange yielded a tetranuclear complex [Pd4L3Cl4](PF6)4(4a). Structures of these complexes are characterized by both spectroscopy and X-ray crystallography. Interconversion of these three complexes was studied via the manipulation of stoichiometric ratio of ligand to metal precursor. The catalytic activity of these complexes for carbonylative Suzuki-Miyaura cross-coupling was investigated. Complex 2 shows an excellent catalytic activity on the reaction of aryl iodide with arylboronic acid in the presence of atmospheric pressure of CO to give the corresponding benzophenones.

Dirhodium-Catalyzed Enantioselective B?H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes

Huang, Ming-Yao,Li, Xiao-Yu,Su, Yu-Xuan,Yang, Liang-Liang,Zhao, Yu-Tao,Zhu, Shou-Fei

supporting information, p. 24214 - 24219 (2021/10/07)

The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B?H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B?H bond was most likely the rate-determining step.

Novel and efficient bridged bis(N-heterocyclic carbene)palladium(II) catalysts for selective carbonylative Suzuki–Miyaura coupling reactions to biaryl ketones and biaryl diketones

El Ali, Bassam,Fettouhi, Mohammed,Mansour, Waseem

, (2020/03/23)

Bridged N,N′-substituted bisbenzimidazolium bromide salts (L1, L2, and L3) were synthesized and fully characterized. Reactions of palladium acetate with L1, L2, and L3 afforded corresponding new bridged bis(N-heterocyclic carbene)palladium(II) complexes (C1, C2, and C3) in high yields. The X-ray structure of complex C1 showed that the Pd(II) ion is bonded to the two carbon atoms of the bis(N-heterocyclic carbene) and two bromido ligands are in the cis position, resulting in a distorted square planar geometry. The three Pd(NHC)2Br2 complexes C1, C2, and C3 were evaluated in carbonylative Suzuki–Miyaura coupling reactions of aryl boronic acids with aryl halides and displayed high catalytic activity with low catalyst loading. The coupling reactions of aryl bromides were selective towards the carbonylation product at higher carbon monoxide pressure.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27645-60-9