3081-24-1Relevant articles and documents
EDTA bis-(ethyl phenylalaninate): A novel transition metal-ion chelating hydroxyl radical scavenger with a potential anti-inflammatory role
Naughton, Declan P.,Grootveld, Martin
, p. 2573 - 2575 (2001)
Conjugation of ethylenediaminetetraacetic acid (EDTA) to ethyl phenylalaninate generates a novel radical scavenging metal-ion chelator EDTA bis-(ethyl phenylalaninate) (EBEP). The oxidation products o-, m- and p-tyrosine were isolated from hydrolysed, aqueous and aerated solutions containing EBEP, Fe(II) and H2O2. Data obtained demonstrate the potential of EBEP to act as a radical scavenging, iron-ion chelating antioxidant under physiologically relevant conditions.
Inhibition of acetylcholinesterase by coumarin-linked amino acids synthetized via triazole associated with molecule partition coefficient
De Sousa, Bianca L.,Leite, Jo?o P.V.,Mendes, Tiago A.O.,Varej?o, Eduardo V.V.,Chaves, Anna C.S.,da Silva, Júnio G.,Agrizzi, Ana P.,Ferreira, Priscila G.,Pilau, Eduardo J.,Silva, Evandro,dos Santos, Marcelo H.
, p. 652 - 664 (2021/02/16)
A previous study for the identification of acetylcholinesterase (AChE) inhibitors demonstrated that the hybrid between tyrosol, the 1,2,3-triazole nucleus, and the coumarin group, namely 7-({1-[2-(4-hydroxyphenyl)ethyl]-1H-1,2,3-triazol-4-yl}methoxy)-4-methyl-2H-chromen-2-one (10), has a high enzyme inhibitory activity. Here, we synthesized analogues of 10 via triazole with pharmacophoric groups represented by tyrosine, phenylalanine, tryptophan, and glycine in addition to evaluating the impact of coumarin-linked amino acids on AChE inhibition. We obtained eight triazoles, six of which are undescribed. In general, the presence of carboxylic acid decreased the inhibitory activity, while aromatic amino acids increased enzymatic inhibition compared to glycine. The derivative containing tyrosine, structurally most similar to 10, presented the lowest inhibition percentage, indicating that phenolic hydroxyl is not the preponderant factor for inhibition. Molecular docking was not enough to explain in vitro experiments. On the other hand, MlogP (logP calculated by the Moriguchi method) was related positively to enzymatic inhibition. To increase the hydrophobicity of the molecules, we tested the esterified triazole derivatives comparatively with the enzyme. The compound ethyl 2-(4-(((4-methyl-2-oxo-2H-chromen-7-yl)oxy)methyl)- 1H-1,2,3-triazol-1-yl)acetate (6) presented an increment of inhibitory activity of 46.97 ± 1.75% at 100 μmol L-1. We also associated the best activity with the lowest van der Waals volume and molar mass values.
Stereospecific Synthesis of 3,4-Dihydro-2 H-naphtho-1,4-oxazin-2-ones by Unification of Benzoxepine-4-carboxylates with Chiral Amino Acid Ethyl Esters
Bhimapaka, China Raju,Kasagani, Veera Prasad,Kurma, Siva Hariprasad
supporting information, p. 2976 - 2983 (2020/03/23)
A novel and efficient stereocontrolled method has been developed for the preparation of chiral 3,4-dihydro-2H-naphtho[1,2-b][1,4]oxazin-2-ones by the reaction of benzoxepine-4-carboxylates with chiral amino acid ethyl esters for the first time. The chiral 3,4-dihydro-2H-naphtho-1,4-oxazinones have been achieved in one step by the formation of C-N, C-C, and C-O bonds.
Rh(iii)-Catalyzed diastereoselective transfer hydrogenation: An efficient entry to key intermediates of HIV protease inhibitors
Chen, Gen-Qiang,Lang, Qi-Wei,Phansavath, Phannarath,Ratovelomanana-Vidal, Virginie,Wang, Fangyuan,Wu, Ting,Yin, Congcong,Zhang, Xumu,Zheng, Long-Sheng
supporting information, p. 3119 - 3122 (2020/03/23)
A highly efficient diastereoselective transfer hydrogenation of α-aminoalkyl α′-chloromethyl ketones catalyzed by a tethered rhodium complex was developed and successfully utilized in the synthesis of the key intermediates of HIV protease inhibitors. With the current Rh(iii) catalyst system, a series of chiral 3-amino-1-chloro-2-hydroxy-4-phenylbutanes were produced in excellent yields and diastereoselectivities (up to 99% yield, up to 99?:?1 dr). Both diastereomers of the desired products could be efficiently accessed by using the two enantiomers of the Rh(iii) catalyst.
Reductive Alkylation of Amines with Carboxylic Ortho Esters
Kadyrov, Renat,Moebus, Konrad
supporting information, p. 3352 - 3357 (2020/07/04)
We have demonstrated for the first time that carboxylic ortho esters could be used as an alkylating agent in the reductive alkylation of amines. A variety of amines, including amino acid esters, were alkylated affording mono-alkylated products with high selectivity in practical to high yields using standard heterogeneous catalysts. By applying acyclic ortho esters alkylation was completed at room temperature. (Figure presented.).
Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors
Prent-Pe?aloza, Luis,De La Torre, Alexander F.,Velázquez-Libera, José L.,Gutiérrez, Margarita,Caballero, Julio
, (2019/01/21)
Ugi four component reaction (Ugi-4CR) isocyanide-based multicomponent reactions were used to synthesize diN-substituted glycyl-phenylalanine (diNsGF) derivatives. All of the synthesized compounds were characterized by spectroscopic and spectrometric techniques. In order to evaluate potential biological applications, the synthesized compounds were tested in computational models that predict the bioactivity of organic molecules by using only bi-dimensional molecular information. The diNsGF derivatives were predicted as cholinesterase inhibitors. Experimentally, all of the synthesized diNsGF derivatives showed moderate inhibitory activities against acetylcholinesterase (AChE) and poor activities against butyrylcholinesterase (BuChE). Compound 7a has significant activity and selectivity against AChE, which reveals that the diNsGF scaffold could be improved to reach novel candidates by combining other chemical components of the Ugi-4CR in a high-throughput combinatorial screening experiment. Molecular docking experiments of diNsGF derivatives inside AChE suggest that these compounds placed the phenylalanine group at the peripheral site of AChE. The orientations and chemical interactions of diNsGF derivatives were analyzed, and the changeable groups were identified for future exploration of novel candidates that could lead to the improvement of diNsGF derivative inhibitory activities.
Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of l-phenylalanine-derived surface-active ionic liquids
Kapitanov, Illia V.,Jordan, Andrew,Karpichev, Yevgen,Spulak, Marcel,Perez, Lourdes,Kellett, Andrew,Kümmerer, Klaus,Gathergood, Nicholas
supporting information, p. 1777 - 1794 (2019/04/08)
We report for the first time a comprehensive study on the synthesis (supported by green chemistry metrics), aggregation properties, bacterial/fungal toxicities and preliminary data on biodegradation of a series of 24 l-phenylalanine derived surface-active ionic liquids (SAILs). The various cationic headgroups included pyridinium, imidazolium, and cholinium groups and enabled a comprehensive analysis of the effect of the alkyl ester chain (from C2 to C16) on the synthesis, toxicity, biodegradability, and surfactant properties of the novel SAILs. The evaluation of the SAILs revealed that a wide variety of properties were strictly dependent on the side chain length, including their bacterial and fungal toxicities (from low toxicity to high toxicity), and aggregation properties. Addition of the l-phenylalanine moiety which connects the lipophilic side chain to the cationic head group results in the phenyl group essentially contributing to the self-assembling properties. The interplay of dispersion interactions of the phenyl ring and the side chain hydrophobicity allows us to rank the novel SAILs (thus identifying the remarkable ones) as compared to other surfactants. The CMC values for the SAILs reported in this study are significantly (up to 10 times) lower than those reported for conventional surfactants with the same length of the side chain. Adsorption and micellization are among the factors affecting the toxicity of the studied SAILs. Preliminary biodegradation studies have shown that no clear trend was observed when comparing the closed bottle test results of the SAIL C2 and C10 derivatives. Medium chain length (C6 to C8) pyridinium SAILs have been recommended as the most prospective green alternatives for conventional cationic surfactants. These findings can contribute to designing new efficient amphiphiles with optimized antimicrobial activities and to employ them as potential environmentally benign mineralisable surfactants.
Ionic liquids with methotrexate moieties as a potential anticancer prodrug: Synthesis, characterization and solubility evaluation
Moshikur, Rahman Md.,Chowdhury, Md. Raihan,Wakabayashi, Rie,Tahara, Yoshiro,Moniruzzaman, Muhammad,Goto, Masahiro
, p. 226 - 233 (2019/01/23)
The technological utility of active pharmaceutical ingredients (APIs) is enormously improved when they are converted into ionic liquids (ILs). API-ILs possess better aqueous solubility and thermal stability than that of solid-state salt or crystalline drugs. However, many such API-ILs are not biocompatible or biodegradable. In the current study, we synthesized a series of IL-APIs using methotrexate (MTX), a potential anticancer prodrug, and biocompatible IL-forming cations (choline and amino acid esters). The MTX-IL moieties were characterized through 1H NMR, FTIR, p-XRD, DSC and thermogravimetric analysis. The solubility of the MTX-ILs was evaluated in simulated body fluids (phosphate-buffered saline, simulated gastric, and simulated intestinal fluids). An assessment of the in vitro antitumor activity of the MTX-ILs in a mammalian cell line (HeLa cells) was used to evaluate their cytotoxicity. The MTX-ILs showed aqueous solubility at least 5000 times higher than that of free MTX and two orders of magnitude higher compared with that of a sodium salt of MTX in both water and simulated body fluids. Importantly, a proline ethyl ester MTX prodrug showed similar solubility as the MTX sodium salt but it provided improved in vitro antitumor activity. These results clearly suggest that the newly synthesized API-ILs represent promising potential drug formulations.
OX2R COMPOUNDS
-
Paragraph 0475; 0476; 0516; 0519, (2019/10/19)
Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids
Moshikur, Rahman Md.,Chowdhury, Md. Raihan,Wakabayashi, Rie,Tahara, Yoshiro,Moniruzzaman, Muhammad,Goto, Masahiro
, p. 31 - 38 (2018/05/28)
The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.