Welcome to LookChem.com Sign In|Join Free

CAS

  • or

35654-56-9

Post Buying Request

35654-56-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

35654-56-9 Usage

Chemical Properties

Light brown powder

Uses

4-Chloro-6,7-dimethoxyquinoline, can be used as an intermediate for the synthesis of various pharmaceutical and biologically active compounds. It is used for the preparation of Tivozanib (T447205), and Cabozantinib (C051500), acting as anticancer agents.

Check Digit Verification of cas no

The CAS Registry Mumber 35654-56-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,6,5 and 4 respectively; the second part has 2 digits, 5 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 35654-56:
(7*3)+(6*5)+(5*6)+(4*5)+(3*4)+(2*5)+(1*6)=129
129 % 10 = 9
So 35654-56-9 is a valid CAS Registry Number.
InChI:InChI=1/C11H10ClNO2/c1-14-10-5-7-8(12)3-4-13-9(7)6-11(10)15-2/h3-6H,1-2H3

35654-56-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-CHLORO-6,7-DIMETHOXYQUINOLINE

1.2 Other means of identification

Product number -
Other names 4-chloro-6,7-dimethoxy-quinoline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35654-56-9 SDS

35654-56-9Relevant articles and documents

Design, Synthesis and Biological Evaluation of Novel α-Acyloxycarboxamide-Based Derivatives as c-Met Inhibitors

Feng, Yu-juan,Ren, Yu-Lin,Zhao, Li-Ming,Xue, Guo-Qiang,Yu, Wen-Hao,Yang, Jia-Qi,Liu, Jun-Wei

, p. 2241 - 2250 (2021/06/28)

Dysregulated HGF/c-Met signalling has been associated with many human cancers, poor clinical outcomes, and even resistance acquisition to some approved targeted therapies. As such, c-Met kinase has emerged as an attractive target for anticancer drug discovery. Herein, a series of 6,7-disubstitued-4-(2-fluorophenoxy)quinoline derivatives bearing α-acyloxycarboxamide moiety were designed, synthesized via Passerini reaction as the key step, and evaluated for their in vitro biological activities against c-Met kinase and five selected cancer cell lines. The preliminary structure-activity relationship demonstrated that α-acyloxycarboxamide as the 5-atom linker maintained the potent antitumor potency. Among these compounds, compound 25s (c-Met IC50 = 4.06 nmol/L) was identified as the most promising lead compound and displayed the most potent antiproliferative activities against A549, HT-29 and MDA-MB-231 cell lines with IC50 of 0.39, 0.20, and 0.58 μmol/L, which were 1.3-, 1.4- and 1.2-fold superior to foretinib, respectively. The further studies indicated that compound 25s can induce apoptosis of A549 cells and arrest efficiently the cell cycle distribution in G2/M phase of A549 cells. Moreover, compound 25s can also inhibit c-Met phosphorylation in A549 cells by a dose-dependent manner. Collectively, these results indicated that compound 25s could be a potential anticancer lead compound deserving for further development.

Novel substituted pyrazolo [1, 5-a] pyrimidine compound and preparation method and application thereof

-

Paragraph 0199; 0210-0212, (2020/08/02)

The invention provides a novel substituted pyrazolo [1, 5-a]pyrimidine compound and a preparation method and application thereof, and particularly relates to a pyrazolo [1, 5-a]pyrimidine-containing quinoline derivative shown as a general formula (I) and pharmaceutically acceptable salts thereof, and substituent groups X, Ar and A have meanings given in the specification. The invention also relates to a compound represented by the general formula (I), wherein the compound has a strong c-Met kinase inhibition effect. The invention also relates to application of the compound and the pharmaceutically acceptable salt thereof in preparation of drugs for treating and/or preventing diseases caused by abnormal high expression of c-Met kinase, especially application in preparation of drugs for treating and/or preventing cancers.

Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu-catalyzed three-component reaction

Fang, Sen-Biao,Li, Hui-Jing,Nan, Xiang,Wu, Rui,Wu, Yan-Chao,Zhang, Jing,Zhang, Zhi-Zhou

, (2020/06/04)

In our continuing efforts to develop novel c-Met inhibitors as potential anticancer candidates, a series of new N-sulfonylamidine derivatives were designed, synthesized via Cu-catalyzed multicomponent reaction (MCR) as the key step, and evaluated for their in vitro biological activities against c-Met kinase and four cancer cell lines (A549, HT-29, MKN-45 and MDA-MB-231). Most of the target compounds showed moderate to significant potency at both the enzyme-based and cell-based assay and possessed selectivity for A549 and HT-29 cancer cell lines. The preliminary SAR studies demonstrated that compound 26af (c-Met IC50 = 2.89 nM) was the most promising compound compared with the positive foretinib, which exhibited the remarkable antiproliferative activities, with IC50 values ranging from 0.28 to 0.72 μM. Mechanistic studies of 26af showed the anticancer activity was closely related to the blocking phosphorylation of c-Met, leading to cell cycle arresting at G2/M phase and apoptosis of A549 cells by a concentration-dependent manner. The promising compound 26af was further identified as a relatively selective inhibitor of c-Met kinase, which also possessed an acceptable safety profile and favorable pharmacokinetic properties in BALB/c mouse. The favorable drug-likeness of 26af suggested that N-sulfonylamidines may be used as a promising scaffold for antitumor drug development. Additionally, the docking study and molecular dynamics simulations of 26af revealed a common mode of interaction with the binding site of c-Met. These positive results indicated that compound 26af is a potential anti-cancer candidate for clinical trials, and deserves further development as a selective c-Met inhibitor.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35654-56-9