Welcome to LookChem.com Sign In|Join Free

CAS

  • or

36366-93-5

Post Buying Request

36366-93-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

36366-93-5 Usage

Molecular weight

366.45 g/mol

Physical state

Clear, colorless liquid

Odor

Slightly sweet

Solubility

Soluble in most organic solvents, insoluble in water

Boiling point

468.1°C

Melting point

Not applicable (decomposes before melting)

Density

1.11 g/cm3 (at 20°C)

Viscosity

1.2 cp (at 25°C)

Refractive index

1.456 (at 20°C, 589 nm)

Functional groups

Ethoxy groups, phenoxyethoxy group, central ethanol group

Chemical properties

Reacts with acids, bases, and other reactive chemicals; can undergo esterification, etherification, and oxidation reactions

Uses

Solvent for paints, inks, and coatings; production of plastics, textiles, and personal care products.

Check Digit Verification of cas no

The CAS Registry Mumber 36366-93-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,6,3,6 and 6 respectively; the second part has 2 digits, 9 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 36366-93:
(7*3)+(6*6)+(5*3)+(4*6)+(3*6)+(2*9)+(1*3)=135
135 % 10 = 5
So 36366-93-5 is a valid CAS Registry Number.
InChI:InChI=1/C14H22O5/c15-6-7-16-8-9-17-10-11-18-12-13-19-14-4-2-1-3-5-14/h1-5,15H,6-13H2

36366-93-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-[2-[2-(2-phenoxyethoxy)ethoxy]ethoxy]ethanol

1.2 Other means of identification

Product number -
Other names Dowanol T 4Ph

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:36366-93-5 SDS

36366-93-5Relevant articles and documents

PROCESS FOR THE CONTINUOUS PRODUCTION OF HIGH PURITY PHENOLIC GLYCOL ETHER

-

Page/Page column 13-15, (2009/07/17)

Phenolic glycol ethers, e.g., ethylene glycol phenyl ether, are prepared by a continuous, nonaqueous process comprising the steps of (A) contacting under isothermal reactive conditions in a first reactor or reaction zone an alkylene oxide, e.g., ethylene oxide, with (i) a stoichiometric molar excess of a phenolic compound, e.g., phenol, and (ii) a catalytic amount of a base, e.g., sodium hydroxide, homogeneously dispersed throughout the phenolic compound, to form a first intermediate phenolic glycol ether product, (Bj transferring the first intermediate phenolic glycol ether product to a second reactor or reaction zone, and ( C) subjecting the first intermediate phenolic glycol ether product to adiabatic reactive conditions in the second reactor or reaction zone to form a second intermediate phenolic glycol ether product comprising phenolic glycol ether, unreacted phenolic compound, catalyst, water and byproduct glycols. In addition, the mono-/di-product weight ratio can be adjusted by increasing or decreasing the amount of base catalyst employed.

SELECTIV BROMINATION OF THE AROMATIC RING IN ω-PHENYLPOLYOXAALKANES AND ALKANOLS IN MICELLES

Jursic, Branko

, p. 1553 - 1558 (2007/10/02)

The regioselecticity of bromination of ω-phenylpolyoxaalkanes and alkanols by bromine in aqueous solution of dodecyl sulfate (SDS) and aqueous solution of cetyltrimethylammonium bromide (CTAB) are shown to be related to the average orientation of substrate as indicated by 1H NMR studies.Thus ortho-bromination is promoted at higher concentrations of the surfactant relative to pure water.In contrast, at an equal ratio of the surfactant and substrate para-bromination is promoted.The results are discussed with respect to the average orientation of substrate in a micellar microenvironment and the formation of an ether-bromine comples as possible bromination agent.

Phase-Transfer-Catalyzed Gomberg-Bachmann Synthesis of Unsymmetrical Biarenes: A Survey of Catalysts and Substrates

Beadle, James R.,Korzeniowsky, Stephen H.,Rosenberg, David E.,Garcia-Slanga, Blanche J.,Gokel, George W.

, p. 1594 - 1603 (2007/10/02)

Two problems have hindered the Gomberg-Bachmann (GB) and Pschorr reactions of arenediazonium cations: the instability of the arenediazonium salts and side reactions.Arenediazonium tetrafluoroborate and hexafluorophosphate salts can be prepared in high yield and purity and can be stored safely.Unfortunately, these salts are insoluble in most nonpolar organic solvents.Crown ether complexation or other phase-transfer (pt) catalytic methodology can ameliorate this situation, and reactions conducted by the approaches outlined herein often afforded coupling or cyclization products in high yield and corresponding purity.The use of crown ethers, quarternary 'onium salts, lipophilic carboxylic acid salts, and even the polar cosolvent acetonitrile increase the utility of the ptGB reaction dramatically.Sixty examples of couplings are reported along with an assessment of selectivities.A number of examples are also presented of phase-transfer-type Pschorr cyclizations.In the latter case, the use of potassium superoxide, KO2, is introduced to suppress indazole formation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 36366-93-5