Welcome to LookChem.com Sign In|Join Free

CAS

  • or

37385-01-6

Post Buying Request

37385-01-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

37385-01-6 Usage

General Description

8-Benzylaminoquinoline is a chemical compound with the molecular formula C17H16N2. It is a heterocyclic compound consisting of a quinoline ring with a benzylamino group attached at the 8-position. 8-BENZYLAMINOQUINOLINE has been studied for its potential pharmacological properties, including its ability to act as a fluorescent probe for detecting metal ions, such as zinc and cadmium, as well as its potential anti-cancer and anti-inflammatory properties. 8-Benzylaminoquinoline has also been investigated for its potential use in organic light-emitting diodes (OLEDs) and as a photosensitizer in dye-sensitized solar cells. The compound's chemical structure and properties make it a versatile and potentially useful tool in various scientific and technological applications.

Check Digit Verification of cas no

The CAS Registry Mumber 37385-01-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,7,3,8 and 5 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 37385-01:
(7*3)+(6*7)+(5*3)+(4*8)+(3*5)+(2*0)+(1*1)=126
126 % 10 = 6
So 37385-01-6 is a valid CAS Registry Number.
InChI:InChI=1/C16H14N2/c1-2-6-13(7-3-1)12-18-15-10-4-8-14-9-5-11-17-16(14)15/h1-11,18H,12H2

37385-01-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzylquinolin-8-amine

1.2 Other means of identification

Product number -
Other names 8-(Benzylamino)quinoline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:37385-01-6 SDS

37385-01-6Downstream Products

37385-01-6Relevant articles and documents

Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation

Wang, Erfei,Chen, Kaixuan,Chen, Yinan,Zhang, Jiawei,Lin, Xinrong,Chen, Mao

, p. 17 - 21 (2020/11/04)

A porous polymeric ligand (PPL) has been synthesized and complexed with copper to generate a heterogeneous catalyst (Cu@PPL) that has facilitated the efficient C-N coupling with various (hetero)aryl chlorides under mild conditions of visible-light irradiation at 80 °C (58 examples, up to 99% yields). This method could be applied to both aqueous ammonia and substituted amines, and is compatible to a variety of functional groups and heterocycles, as well as allows tandem C-N couplings with conjunctive dihalides. Furthermore, the heterogeneous characteristic of Cu@PPL has enabled a straightforward catalyst separation in multiple times of recycling with negligible catalytic efficiency loss by simple filtration, affording reaction mixtures containing less than 1 ppm of Cu residue. [Figure not available: see fulltext.]

BF3·Et2O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant

Fan, Qing-Hua,Liu, Xintong,Luo, Zhenli,Pan, Yixiao,Xu, Lijin,Yang, Ji,Yao, Zhen,Zhang, Xin

supporting information, p. 5205 - 5211 (2021/07/29)

A versatile metal- and base-free direct reductive amination of aldehydes with amines using formic acid as a reductant under the catalysis of inexpensive BF3·Et2O has been developed. A wide range of primary and secondary amines and diversely substituted aldehydes are compatible with this transformation, allowing facile access to various secondary and tertiary amines in high yields with wide functional group tolerance. Moreover, the method is convenient for the late-stage functionalization of bioactive compounds and preparation of commercialized drug molecules and biologically relevant N-heterocycles. The procedure has the advantages of simple operation and workup and easy scale-up, and does not require dry conditions, an inert atmosphere or a water scavenger. Mechanistic studies reveal the involvement of imine activation by BF3and hydride transfer from formic acid.

Platinum Assisted Tandem P–C Bond Cleavage and P–N Bond Formation in Amide Functionalized Bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o: Synthesis, Mechanistic, and Catalytic Studies

Balakrishna, Maravanji S.,Kunchur, Harish S.

supporting information, (2022/01/19)

The reactions of amide functionalized bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o (1) with platinum salts are described. Treatment of 1 with [Pt(COD)Cl2] yielded a chelate complex, [PtCl2{o-Ph2PC6H4C(O)N(H)C6H4PPh2-o}κ2-P,P] (2), which on subsequent treatment with LiHMDS formed a novel 1,2-azaphospholene-phosphine complex [Pt(C6H5)Cl{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (3) involving a tandem P–C bond cleavage and P–N bond formation. The same complex 3 on passing dry HCl gas afforded the dichloro complex [PtCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (5). Complex 2 upon refluxing in toluene or treatment of 1 with [Pt(COD)Cl2] in the presence of a base at room temperature resulted in the pincer complex [PtCl{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (4). Reaction of 1 with [Pt(COD)ClMe] at room temperature also afforded the pincer complex [PtMe{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (6). Mechanistic studies on 1,2-azaphospholene formation showed the reductive elimination of LiCl to form a phosphonium salt that readily adds one of the P–C bonds oxidatively to the in situ generated Pt0 species to form a chelate complex 3. The analogous palladium complex [PdCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (7) showed excellent catalytic activity toward N-alkylation of amines with alcohols with a very low catalyst loading (0.05 mol %), and the methodology is very efficient toward the gram-scale synthesis of many N-alkylated amines.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 37385-01-6