Welcome to LookChem.com Sign In|Join Free


  • or


Post Buying Request

38283-38-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

38283-38-4 Usage

General Description

N-(4-Acetylphenyl)-2-Chloroacetamide is a chemical compound classified as an anilide and an aryloxy compound. It is made up of a benzene ring attached to an acetamide and chloroacetamide groups. Its molecular formula is C10H10ClNO2. This substance is generally used in organic synthesis, pharmaceuticals, agrochemicals, and dyestuffs. As with many chemical substances, handling this compound requires caution to avoid potential harmful effects. Therefore, it's necessary to check material safety data sheets before working with it.

Check Digit Verification of cas no

The CAS Registry Mumber 38283-38-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,8,2,8 and 3 respectively; the second part has 2 digits, 3 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 38283-38:
134 % 10 = 4
So 38283-38-4 is a valid CAS Registry Number.



According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017


1.1 GHS Product identifier


1.2 Other means of identification

Product number -
Other names p-chloroacetamidoacetophenone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:38283-38-4 SDS

38283-38-4Relevant articles and documents

Synthesis, computational studies, tyrosinase inhibitory kinetics and antimelanogenic activity of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives

Rafiq, Muhammad,Nazir, Yasir,Ashraf, Zaman,Rafique, Hummera,Afzal, Samina,Mumtaz, Amara,Hassan, Mubashir,Ali, Anser,Afzal, Khurram,Yousuf, Muhammad Rizwan,Saleem, Muhammad,Kotwica-Mojzych, Katarzyna,Mojzych, Mariusz

, p. 1 - 11 (2019)

The over expression of melanogenic enzymes like tyrosinase caused many hyperpigmentaion disorders. The present work describes the synthesis of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives 3a–e and 5a–e as antimelanogenic agents. The tyrosinase inhibitory activity of synthesized derivatives 3a–e and 5a–e was determined and it was found that derivative 5c possesses excellent activity with IC50 = 0.0089 μM compared to standard kojic acid (IC50 = 16.69 μM). The presence of hydroxyl groups at the ortho and the para position of cinnamic acid phenyl ring in compound 5c plays a vital role in tyrosinase inhibitory activity. The compound 5d also exhibited good activity (IC50 = 8.26 μM) compared to standard kojic acid. The enzyme inhibitory kinetics results showed that compound 5c is a competitive inhibitor while 5d is a mixed-type inhibitor. The mode of binding for compounds 5c and 5d with tyrosinase enzyme was also assessed and it was found that both derivatives irreversibly bind with target enzyme. The molecular docking and molecular dynamic simulation studies were also performed to find the position of attachment of synthesized compounds at tyrosinase enzyme (PDB ID 2Y9X). The results showed that all of the synthesized compounds bind well with the active binding sites and most potent derivative 5c formed stable complex with target protein. The cytotoxicity results showed that compound 5c is safe at a dose of 12 μg/mL against murine melanoma (B16F10) cells. The same dose of 5c was selected to determine antimelanogenic activity; the results showed that it produced antimelenogenic effects in murine melanoma (B16F10) cells. Based on our investigations, it was proposed that compound 5c may serve as a lead structure to design more potent antimelanogenic agents.

Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors

El-Adl, Khaled,El-Helby, Abdel-Ghany A.,Ayyad, Rezk R.,Mahdy, Hazem A.,Khalifa, Mohamed M.,Elnagar, Hamdy A.,Mehany, Ahmed B.M.,Metwaly, Ahmed M.,Elhendawy, Mostafa A.,Radwan, Mohamed M.,ElSohly, Mahmoud A.,Eissa, Ibrahim H.

, (2020/11/24)

Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.

Highly Potent and Selective Butyrylcholinesterase Inhibitors for Cognitive Improvement and Neuroprotection

Li, Qi,Chen, Ying,Xing, Shuaishuai,Liao, Qinghong,Xiong, Baichen,Wang, Yuanyuan,Lu, Weixuan,He, Siyu,Feng, Feng,Liu, Wenyuan,Chen, Yao,Sun, Haopeng

, p. 6856 - 6876 (2021/05/29)

Butyrylcholinesterase (BChE) has been considered as a potential therapeutic target for Alzheimer's disease (AD) because of its compensation capacity to hydrolyze acetylcholine (ACh) and its close association with Aβ deposit. Here, we identified S06-1011 (hBChE IC50 = 16 nM) and S06-1031 (hBChE IC50 = 25 nM) as highly effective and selective BChE inhibitors, which were proved to be safe and long-acting. Candidate compounds exhibited neuroprotective effects and the ability to improve cognition in scopolamine- and Aβ1-42 peptide-induced cognitive deficit models. The best candidate S06-1011 increased the level of ghrelin, a substrate of BChE, which can function as improving the mental mood appetite. The weight gain of the S06-1011-treated group remarkably increased. Hence, BChE inhibition not only plays a protective role against dementia but also exerts a great effect on treating and nursing care.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)


What can I do for you?
Get Best Price

Get Best Price for 38283-38-4