99-92-3Relevant articles and documents
Palladated halloysite hybridized with photo-polymerized hydrogel in the presence of cyclodextrin: An efficient catalytic system benefiting from nanoreactor concept
Sadjadi, Samahe,Atai, Mohammad
, (2019)
Considering the excellent performance of halloysite as a catalyst support and in an attempt to benefit from the concept of nanoreactors in the catalysis, an innovative catalytic system has been designed, in which acrylamide and bis-acrylamide were photo-p
Zinc-catalyzed reactions of ethenetricarboxylates with 2- (trimethylsilylethynyl)anilines leading to bridged quinoline derivatives
Yamazaki, Shoko,Morikawa, Satoshi,Miyazaki, Kazuya,Takebayashi, Masachika,Yamamoto, Yuko,Morimoto, Tsumoru,Kakiuchi, Kiyomi,Mikata, Yuji
, p. 2796 - 2799 (2009)
Zinc Lewis acid-catalyzed cyclization of thenetricarboxylate derivatives 1 with 2-ethynylanilines has been examined. Reaction of 1,1-diethyl 2-fert-butyl ethenetricarboxylate 1 b with 2-(trimethylsilylethynyl)aniline substrates In the presence of Zn(OTf)
ISOINDOLINONE COMPOUNDS
-
Page/Page column 230, (2021/04/17)
Disclosed herein is a compound or pharmaceutically acceptable salts or stereoisomers thereof of of formula I wherein X1 is linear or branched C1-6 alkyl, C3-6 cycloalkyl, -C1-6 alkyl C3-6 cycloalkyl, C6-10 aryl, 5-10 membered heteroaryl, C1-6 alkyl C6-10 aryl, C1-6 alkyl 5-10 membered heteroaryl, wherein X1 is unsubstituted or substituted with one or more of halogen, linear or branched C1-6 alkyl, linear or branched C1-6 heteroalkyl, CF3, CHF2, -O-CHF2, -O-(CH2)2-OMe, OCF3, C1-6 alkylamino, -CN, -N(H)C(O)-C1- 6alkyl, -OC(O)-C1-6alkyl, -OC(O)-C1-4alkylamino, -C(O)O-C1-6alkyl, -COOH, - CHO, -C1-6alkylC(O)OH, -C1-6alkylC(O)O-C1-6alkyl, NH2, C1-6 alkoxy or C1-6 alkylhydroxy; X2 is hydrogen, C6-10 aryl, 5-10 membered heteroaryl, -O-(5-10 membered heteroaryl), 4-8 membered heterocycloalkyl, C1-4 alkyl 4-8 membered heterocycloalkyl, -O-(4-8 membered heterocycloalkyl), -O-C1-4 alkyl-(4-8 membered heterocycloalkyl), -OC(O)-C1-4alkyl-4-8 membered heterocycloalkyl or C6 aryloxy, wherein X2 is unsubstituted or substituted with one or more of linear or branched C1-6 alkyl, NH2, NMe2 or 5-6 membered heterocycloalkyl; n is 0, 1 or 2.
NaI/PPh3-Mediated Photochemical Reduction and Amination of Nitroarenes
Qu, Zhonghua,Chen, Xing,Zhong, Shuai,Deng, Guo-Jun,Huang, Huawen
supporting information, p. 5349 - 5353 (2021/07/21)
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co-N/C catalyst
Dai, Yuyu,Li, Xiaoqing,Wang, Likai,Xu, Xiangsheng
, p. 22908 - 22914 (2021/12/24)
The direct hydrogenation reduction of aromatic nitro compounds to aromatic amines with non-noble metals is an attractive area. Herein, the pyrolysis of Co(2-methylimidazole)2 metal-organic framework successfully produces a magnetic Co-N/C nanocomposite, which exhibits a porous structure with a high specific area and uniform Co nanoparticle distribution in nitrogen-doped graphite. In addition, the Co-N/C catalysts possess high cobalt content (23%) with highly active β-Co as the main existing form and high nitrogen content (3%). These interesting characteristics endow the Co-N/C nanocomposite with excellent catalytic activity for the hydrogenation reduction of nitro compounds under mild conditions. In addition, the obtained Co-N/C nanocomposites possess a broad substrate scope and good cycle stability for the reduction of halogen-substituted or carbonyl substituted phenyl nitrates. This journal is
UiO-66/btb/Pd as a stable catalyst reduction of 4-nitrophenol into 4-aminophenol
Kiani, Zahra,Zhiani, Rahele,Khosroyar, Susan,Motavalizadehkakhky, Alireza,Hosseiny, Malihesadat
, (2020/12/21)
In order to synthesize highly sparse nanoparticles, UiO-66-NH2 can be utilized as an appropriate support. It has great surface area, which is functionalized by 1,3-bis(dimethylthiocarbamoyloxy)benzene compounds that can act as the powerful performers, hence, the Pd (II) is a complex without aggregate over the UiO-66-NH2 microspheres structures (UiO-66/btb/Pd). Nitro-aromatic pollution in industrial waste streams threat wellbeing of water resources. The produced UiO-66/btb/Pd nanocatalyst showed appropriate catalytic activity for reduce nitro-aromatic compounds in aqueous solution. XRD, EDS, SEM, FT-IR, and TEM were utilized for characterizing the nanostructures UiO-66/btb/Pd.
Composite of β-cyclodextrin and bentonite clay: a promising support for Pd immobilization and developing a catalyst for hydrogenation of nitroarenes under mild reaction condition
Koohestani, Fatemeh,Sadjadi, Samahe
supporting information, (2020/12/21)
In attempt to take advantages of naturally occurring compounds for the catalysis, a novel composite composed of β-cyclodextrin, dendrimer and bentonite clay is fabricated and utilized as a support for the stabilization of Pd nanoparticles. To prepare the support, bentonite is amino functionalized and then successively reacted with 2,4,6-trichloro-1,3,5-triazine and ethylenediamine to furnish a dendrimer of generation II on bentonite. Afterwards, the terminal functionalities of the dendrimer were adorned with cyclodextrin. Bentonite played role in the heterogenation of the catalyst and improvement of the stability of the composite while, cyclodextrins served as molecular shuttles and capping agent for the as-prepared Pd nanoparticles. Dendrimer with multi nitrogen atoms, on the other hand, improved Pd anchoring through electrostatic interactions. The catalyst was applied for the hydrogenation of nitroarenes under mild reaction condition in aqueous media in a selective manner. Notably, the catalyst could be recovered and reused repeatedly.
Efficient reduction of nitro compounds and domino preparation of 1-substituted-1H-1,2,3,4-tetrazoles by Pd(ii)-polysalophen coated magnetite NPs as a robust versatile nanocomposite
Xu, DaPeng,Xiong, Meilu,Kazemnejadi, Milad
, p. 12484 - 12499 (2021/04/14)
A new, versatile, and green methodology has been developed for the efficient NaBH4-reduction of nitroarenes as well as the domino/reduction MCR preparation of 1-substituted-1H-1,2,3,4-tetrazoles using Pd(ii)-polysalophen coated magnetite NPs as an efficient heterogeneous magnetically recyclable nanocatalyst. Polysalophen was firstly prepared based on a triazine framework with a high degree of polymerization, then coordinated to Pd ions and, finally, the resulting hybrid was immobilized on magnetite NPs. The catalyst was characterized by various instrumental and analytical methods, including GPC, DLS, N2adsorption-desorption, TGA, VSM, TEM, HRTEM, EDX, XPS, XRD, and ICP analyses. The catalyst possesses dual-functionality including the reduction of nitroarenes and the construction of tetrazole rings all in one stepviaa domino protocol. High to excellent yields were obtained for both nitro reduction and the direct preparation of 1-substituted-1H-1,2,3,4-tetrazoles from nitro compounds. Insight into the mechanism was conducted by XPSin situas well as DLSin situalong with several control experiments. Recyclability of the catalyst was studied for 6 consecutive runs along with metal leaching measurements in each cycle.
Palladated composite of MOF and cyclodextrin nanosponge: A novel catalyst for hydrogenation reaction
Koohestani, Fatemeh,Sadjadi, Samahe
, (2021/07/28)
In attempt to develop green protocols for organic transformations, a novel catalyst is prepared by combination of the features of metal-organic frameworks and polymers of cyclic carbohydrates. In detail, cyclodextrin nanosponge was synthesized from β-cycl
Photocatalytic reduction of nitroaromatics into anilines using CeO2-TiO2 nanocomposite
Chen, Changdong,Lu, Caiyun,Sun, Chengxin,Wang, Fangfang,Yin, Zhengfeng
, (2021/08/19)
The reduction of nitro compounds into amines is an important approach for synthetic and pharmaceutical chemistry. The reduced compounds are used as synthetic intermediates in the synthesis of therapeutic molecules. In the present work, we have fabricated cerium dioxide decorated TiO2 nanoparticles using a sol-gel-hydrothermal method. The synthesized nanocomposite was effectively reduced various nitro-compounds, specifically aromatic nitro compounds, into amines in visible light. All the nitro compounds screened in the photoreduction reaction showed >90% conversion with >96% selectivity. Chromatographic techniques confirmed the products obtained. The nanocomposite photocatalyst has excellent stability under the experimental condition and exhibited up to five cycles with no loss of metal content. The nanomaterials were characterized using various spectroscopic techniques.