Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3945-18-4

Post Buying Request

3945-18-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3945-18-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 3945-18-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,9,4 and 5 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 3945-18:
(6*3)+(5*9)+(4*4)+(3*5)+(2*1)+(1*8)=104
104 % 10 = 4
So 3945-18-4 is a valid CAS Registry Number.
InChI:InChI=1/C9H12O5/c1-6(10)13-8-3-4-12-5-9(8)14-7(2)11/h3-4,8-9H,5H2,1-2H3/t8-,9+/m1/s1

3945-18-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,4-Di-O-acetyl-L-arabinal

1.2 Other means of identification

Product number -
Other names D-Di-O-acetylarabinal

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3945-18-4 SDS

3945-18-4Relevant articles and documents

Diastereoselective Synthesis of Thioglycosides via Pd-Catalyzed Allylic Rearrangement

Jiang, Xuefeng,Li, Jiagen,Wang, Ming

supporting information, p. 9053 - 9057 (2021/11/30)

Stereoselective glycosylation is challenging in carbohydrate chemistry. Herein, stereoselective thioglycosylation of glycals via palladium-catalyzed allylic rearrangement yields various substituents on α-isomer thioglycosides. Two comprehensive series of aryl and benzyl thioglycosides were obtained via a combination of thiosulfates with glycals derived from glucose, arabinose, galactose, and rhamnose. Furthermore, diosgenyl α-l-rhamnoside and isoquercitrin achieved selectivity via stereospecific [2,3]-sigma rearrangements of α-sulfoxide-rhamnoside and α-sulfoxide-glucoside, respectively.

Synthesis of xylal- and arabinal-based crown ethers and their application as asymmetric phase transfer catalysts

Nemcsok, Tamás,Rapi, Zsolt,Bagi, Péter,Keglevich, Gy?rgy,Bakó, Péter

, p. 107 - 119 (2019/11/16)

New xylal- and arabinal-based monoaza-15-crown-5 ethers were synthesized starting from l- and d-xylose, and l- and d-arabinose, respectively. These monosaccharide-based chiral macrocycles were tested as phase transfer catalysts in a few asymmetric reactions. The xylal-based crown compounds proved to be efficient catalysts in a few liquid-liquid phase reactions. The epoxidation of trans-chalcone and the Darzens condensation of α-chloroacetophenone with benzaldehyde took place with complete diastereoselectivity and up to 77% ee and 58% ee, respectively. It was found that the substituents in the aromatic ring of the chalcone and the α-chloroacetophenone had an influence on the enantioselectivity. The highest ee values were obtained in the epoxidation of 4-chlorochalcone (81% ee) and in the reaction of a 2-naphthyl analogue (96% ee), while in the Darzens condensation of 4-phenyl-α-chloroacetophenone with benzaldehyde, a maximum ee of 91% was detected. The configuration of the monosaccharide unit in the crown ring influenced the absolute configuration of the epoxyketones synthesized.

Preparation method of glycal

-

Paragraph 0044; 0081; 0082, (2017/07/21)

The invention belongs to the technical field of chemical engineering and discloses a preparation method of glycal. The method comprises the following steps: (1) adding an organic solvent into a reactor equipped with polyhydroxyaldehyde monosaccharide and a catalyst in an atmosphere of nitrogen, adding a hydroxyl protective agent, carrying out a reflux reaction, and carrying out subsequent processing to obtain a compound a; (2) successively adding ammonium salt and an organic solvent into the compound a under the condition of nitrogen so as to carry out a reaction, and carrying out subsequent processing to obtain a compound b; (3) letting the compound b, substituted hydrazine and a water-removal additive into an organic solvent under the condition of nitrogen so as to carry out a reaction, and carrying out subsequent processing to obtain a compound c; and (4) adding a catalyst and the compound c dissolved in the organic solvent into alkali under the condition of nitrogen, reacting, and carrying out subsequent processing so as to obtain glycal. The preparation method is simple and easy to operate, is low-cost and environment-friendly, and has market advantages. Meanwhile, yield of glycal prepared by the preparation method is good.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3945-18-4