Welcome to LookChem.com Sign In|Join Free

CAS

  • or

39639-98-0

Post Buying Request

39639-98-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

39639-98-0 Usage

General Description

The chemical compound (PIPERAZIN-1-YL)(PYRIDIN-2-YL) METHANONE, also known as 1-(2-pyridin-3-yl-1H-pyrazol-1-yl)ethan-1-one, is an organic compound with the molecular formula C12H12N4O. It is a combination of piperazine and pyridine rings attached to a methanone group. (PIPERAZIN-1-YL)(PYRIDIN-2-YL) METHANONE has potential biological activity and is often used in pharmaceutical research and drug development. It may be used as a building block in the synthesis of complex organic molecules and has been studied for its potential pharmacological properties, including as an inhibitor of certain enzymes or receptors in the body. However, further research is needed to fully understand its biological effects and potential applications.

Check Digit Verification of cas no

The CAS Registry Mumber 39639-98-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,9,6,3 and 9 respectively; the second part has 2 digits, 9 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 39639-98:
(7*3)+(6*9)+(5*6)+(4*3)+(3*9)+(2*9)+(1*8)=170
170 % 10 = 0
So 39639-98-0 is a valid CAS Registry Number.

39639-98-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name piperazin-1-yl(pyridin-2-yl)methanone

1.2 Other means of identification

Product number -
Other names piperazin-1-yl-pyridin-2-yl-methanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:39639-98-0 SDS

39639-98-0Relevant articles and documents

Synthesis and evaluation of 2-(4-[4-acetylpiperazine-1-carbonyl] phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives as potential PARP-1 inhibitors and preliminary study on structure-activity relationship

Chen, Miaojia,Huang, Honglin,Wu, Kaiyue,Liu, Yunfan,Jiang, Lizhi,Li, Yang,Tang, Guotao,Peng, Junmei,Cao, Xuan

, p. 55 - 63 (2021/06/25)

Although 1H-benzo[d]imidazole-4-carboxamide derivatives have been explored for a long time, the structure–activity relationship of the substituents in the hydrophobic pocket (AD binding sites) has not thoroughly discovered. Here in, a series of 2-(4-[4-acetylpiperazine-1-carbonyl]phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives have been designed, synthesized, and successful characterization as novel and effective poly ADP-ribose polymerases (PARP)-1 inhibitors to improve the structure–activity relationships about the substituents in the hydrophobic pocket. These derivatives were evaluated for their PARP-1 inhibitory activity and cellular inhibitory against BRCA-1 deficient cells (MDA-MB-436) and wild cells (MCF-7) using PARP kit assay and MTT method. The results indicated that compared with other heterocyclic compounds, furan ring-substituted derivatives 14n-14q showed better PARP-1 inhibitory activity. Among this derivatives, compound 14p displayed the strongest inhibitory effects on PARP-1 enzyme (IC50?=?0.023 μM), which was close to that of Olaparib. 14p (IC50?=?43.56 ± 0.69 μM) and 14q (IC50?=?36.69 ± 0.83 μM) displayed good antiproliferation activity on MDA-MB-436 cells and inactivity on MCF-7 cells, indicating that 14p and 14q have high selectivity and targeting. The molecular docking method was used to explore the binding mode of compound 14p and PARP-1, and implied that the formation of hydrogen bond was essential for PARP-1 inhibition activities. This study also showed that in the hydrophobic pocket (AD binding sites), the introduction of strong electronegative groups (furan ring, e.g.) or halogen atoms in the side chain of benzimidazole might improve its inhibitory activity and this strategy could be applied in further research.

Discovery of Novel Apigenin-Piperazine Hybrids as Potent and Selective Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors for the Treatment of Cancer

Long, Huan,Hu, Xiaolong,Wang, Baolin,Wang, Quan,Wang, Rong,Liu, Shumeng,Xiong, Fei,Jiang, Zhenzhou,Zhang, Xiao-Qi,Ye, Wen-Cai,Wang, Hao

, p. 12089 - 12108 (2021/09/06)

Poly (ADP-ribose) polymerase-1 (PARP-1) is a potential target for the discovery of chemosensitizers and anticancer drugs. Amentoflavone (AMF) is reported to be a selective PARP-1 inhibitor. Here, structural modifications and trimming of AMF have led to a series of AMF derivatives (9a-h) and apigenin-piperazine/piperidine hybrids (14a-p, 15a-p, 17a-h, and 19a-f), respectively. Among these compounds, 15l exhibited a potent PARP-1 inhibitory effect (IC50 = 14.7 nM) and possessed high selectivity to PARP-1 over PARP-2 (61.2-fold). Molecular dynamics simulation and the cellular thermal shift assay revealed that 15l directly bound to the PARP-1 structure. In in vitro and in vivo studies, 15l showed a potent chemotherapy sensitizing effect against A549 cells and a selective cytotoxic effect toward SK-OV-3 cells through PARP-1 inhibition. 15l·2HCl also displayed good ADME characteristics, pharmacokinetic parameters, and a desirable safety margin. These findings demonstrated that 15l·2HCl may serve as a lead compound for chemosensitizers and the (BRCA-1)-deficient cancer therapy.

Structure-Activity Relationships of Potent, Targeted Covalent Inhibitors That Abolish Both the Transamidation and GTP Binding Activities of Human Tissue Transglutaminase

Akbar, Abdullah,McNeil, Nicole M. R.,Albert, Marie R.,Ta, Viviane,Adhikary, Gautam,Bourgeois, Karine,Eckert, Richard L.,Keillor, Jeffrey W.

, p. 7910 - 7927 (2017/10/06)

Human tissue transglutaminase (hTG2) is a multifunctional enzyme. It is primarily known for its calcium-dependent transamidation activity that leads to formation of an isopeptide bond between glutamine and lysine residues found on the surface of proteins, but it is also a GTP binding protein. Overexpression and unregulated hTG2 activity have been associated with numerous human diseases, including cancer stem cell survival and metastatic phenotype. Herein, we present a series of targeted covalent inhibitors (TCIs) based on our previously reported Cbz-Lys scaffold. From this structure-activity relationship (SAR) study, novel irreversible inhibitors were identified that block the transamidation activity of hTG2 and allosterically abolish its GTP binding ability with a high degree of selectivity and efficiency (kinact/KI > 105 M-1 min-1). One optimized inhibitor (VA4) was also shown to inhibit epidermal cancer stem cell invasion with an EC50 of 3.9 μM, representing a significant improvement over our previously reported "hit" NC9.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 39639-98-0