Welcome to LookChem.com Sign In|Join Free

CAS

  • or
1-(2-Methoxy-phenyl)-ethylamine, also known as 2-methoxyphenethylamine, is a phenethylamine derivative with the molecular formula C9H13NO. It is a psychoactive substance found in various plants and animals and is known for its stimulating and entactogenic effects. As a potential candidate for use as a recreational drug, it also has applications in research and pharmaceutical industries. However, due to potential health and safety risks, its use requires careful regulation and study.

40023-74-3

Post Buying Request

40023-74-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

40023-74-3 Usage

Uses

Used in Pharmaceutical Applications:
1-(2-Methoxy-phenyl)-ethylamine is used as an active pharmaceutical ingredient for the development of medications targeting various conditions. Its stimulating and entactogenic properties make it a potential candidate for the treatment of certain neurological and psychiatric disorders.
Used in Research Applications:
In the field of scientific research, 1-(2-Methoxy-phenyl)-ethylamine serves as a valuable compound for studying the effects of psychoactive substances on the human brain and nervous system. It aids in understanding the mechanisms of action and potential therapeutic applications of phenethylamines.
Used in Recreational Drug Applications:
1-(2-Methoxy-phenyl)-ethylamine is used as a recreational drug due to its stimulating and entactogenic effects. However, its use in this context is controversial and poses potential health and safety risks, necessitating strict regulation and further study to ensure responsible and safe use.

Check Digit Verification of cas no

The CAS Registry Mumber 40023-74-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,0,0,2 and 3 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 40023-74:
(7*4)+(6*0)+(5*0)+(4*2)+(3*3)+(2*7)+(1*4)=63
63 % 10 = 3
So 40023-74-3 is a valid CAS Registry Number.

40023-74-3Relevant articles and documents

Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions

Cui, Zhibing,Liu, Jianguo,Liu, Qiying,Ma, Longlong,Singh, Thishana,Wang, Chenguang,Wang, Nan,Zhu, Yuting

supporting information, p. 7387 - 7397 (2020/11/19)

The primary objective of many researchers in chemical synthesis is the development of recyclable and easily accessible catalysts. These catalysts should preferably be made from Earth-abundant metals and have the ability to be utilised in the synthesis of pharmaceutically important compounds. Amines are classified as privileged compounds, and are used extensively in the fine and bulk chemical industries, as well as in pharmaceutical and materials research. In many laboratories and in industry, transition metal catalysed reductive amination of carbonyl compounds is performed using predominantly ammonia and H2. However, these reactions usually require precious metal-based catalysts or RANEY nickel, and require harsh reaction conditions and yield low selectivity for the desired products. Herein, we describe a simple and environmentally friendly method for the preparation of thin graphene spheres that encapsulate uniform Ni/NiO nanoalloy catalysts (Ni/NiO?C) using nickel citrate as the precursor. The resulting catalysts are stable and reusable and were successfully used for the synthesis of primary, secondary, tertiary, and N-methylamines (more than 62 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, and H2 under very mild industrially viable and scalable conditions (80 °C and 1 MPa H2 pressure, 4 h), offering cost-effective access to numerous functionalized, structurally diverse linear and branched benzylic, heterocyclic, and aliphatic amines including drugs and steroid derivatives. We have also demonstrated the scale-up of the heterogeneous amination protocol to gram-scale synthesis. Furthermore, the catalyst can be immobilized on a magnetic stirring bar and be conveniently recycled up to five times without any significant loss of catalytic activity and selectivity for the product.

Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines

Beller, Matthias,Chandrashekhar, Vishwas G.,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kalevaru, Narayana V.,Kamer, Paul C. J.,Senthamarai, Thirusangumurugan,Zbo?il, Radek

, p. 2973 - 2981 (2020/03/27)

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

Design, synthesis and antifungal activity of threoninamide carbamate derivatives via pharmacophore model

Dong, Wei-Li,Du, Xiu-Jiang,Liu, Xing-Hai,Peng, Xing-Jie,Zhao, Rui-Qi,Zhao, Wei-Guang

, p. 682 - 691 (2020/03/19)

Thirty-six novel threoninamide carbamate derivatives were designed and synthesised using active fragment-based pharmacophore model. Antifungal activities of these compounds were tested against Oomycete fungi Phytophthora capsici in vitro and in vivo. Interestingly, compound I-1, I-2, I-3, I-6 and I-7 exhibited moderate control effect (>50%) against Pseudoperonospora cubensis in greenhouse at 6.25 μg/mL, which is better than that of control. Meanwhile most of these compounds exhibited significant inhibitory against P. capsici. The other nine fungi were also tested. More importantly, some compounds exhibited remarkably high activities against Sclerotinia sclerotiorum, P. piricola and R. solan in vitro with EC50 values of 3.74–9.76 μg/mL. It is possible that the model is reliabile and this method can be used to discover lead compounds for the development of fungicides.

Reductive amination of ketonic compounds catalyzed by Cp*Ir(III) complexes bearing a picolinamidato ligand

Tanaka, Kouichi,Miki, Takashi,Murata, Kunihiko,Yamaguchi, Ayumi,Kayaki, Yoshihito,Kuwata, Shigeki,Ikariya, Takao,Watanabe, Masahito

, p. 10962 - 10977 (2019/09/03)

Cp*Ir complexes bearing a 2-picolinamide moiety serve as effective catalysts for the direct reductive amination of ketonic compounds to give primary amines under transfer hydrogenation conditions using ammonium formate as both the nitrogen and hydrogen source. The clean and operationally simple transformation proceeds with a substrate to catalyst molar ratio (S/C) of up to 20,000 at relatively low temperature and exhibits excellent chemoselectivity toward primary amines.

Stereoselective Synthesis of 1-Arylpropan-2-amines from Allylbenzenes through a Wacker-Tsuji Oxidation-Biotransamination Sequential Process

González-Martínez, Daniel,Gotor, Vicente,Gotor-Fernández, Vicente

, p. 2582 - 2593 (2019/05/15)

Herein, a sequential and selective chemoenzymatic approach is described involving the metal-catalysed Wacker-Tsuji oxidation of allylbenzenes followed by the amine transaminase-catalysed biotransamination of the resulting 1-arylpropan-2-ones. Thus, a series of nine optically active 1-arylpropan-2-amines were obtained with good to very high conversions (74–92%) and excellent selectivities (>99% enantiomeric excess) in aqueous medium. The Wacker-Tsuji reaction has been exhaustively optimised searching for compatible conditions with the biotransamination experiments, using palladium(II) complexes as catalysts and iron(III) salts as terminal oxidants in aqueous media. The compatibility of palladium/iron systems for the chemical oxidation with commercially available and made in house amine transaminases was analysed, finding ideal conditions for the development of a general and stereoselective cascade sequence. Depending on the selectivity displayed by selected amine transaminase, it was possible to produce both 1-arylpropan-2-amines enantiomers under mild reaction conditions, compounds that present therapeutic properties or can be employed as synthetic intermediates of chiral drugs from the amphetamine family. (Figure presented.).

One-Pot Transformation of Ketoximes into Optically Active Alcohols and Amines by Sequential Action of Laccases and Ketoreductases or ω-Transaminases

Correia Cordeiro, Raquel S.,Ríos-Lombardía, Nicolás,Morís, Francisco,Kourist, Robert,González-Sabín, Javier

, p. 1272 - 1277 (2019/01/24)

An enzymatic one-pot process for asymmetric transformation of prochiral ketoximes into alcohols or amines was developed by sequential coupling of a laccase-catalyzed deoximation either with a ketone reduction (ketoreductase, KRED) or bioamination (ω-transaminase, ω-TA) in aqueous medium. An accurate selection of biocatalysts provided the corresponding products in excellent enantiomeric excesses and overall conversions ranging from 83 to >99 % for alcohols and 70 to >99 % for amines. Likewise, the employment of exclusively 1 % (w/w) of Cremophor, a polyethoxylated castor oil, as co-solvent enabled to reach concentrations up to 100 mM in the chiral alcohols cascade.

Substituent effects on chiral resolutions of derivatized 1-phenylalkylamines by heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin GC stationary phase

Issaraseriruk, Natthapol,Sritana-anant, Yongsak,Shitangkoon, Aroonsiri

supporting information, p. 900 - 906 (2018/05/08)

Chiral resolutions of trifluoroacetyl-derivatized 1-phenylalkylamines with different type and position of substituent were investigated by capillary gas chromatography by using heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin diluted in OV-1701 as a chiral stationary phase. The influence of column temperature on retention and enantioselectivity was examined. All enantiomers of meta-substituted analytes as well as fluoro-substituted analytes could be resolved. Temperature had a favorable influence on enantioselectivity for small amines with substituents at the ortho-position. The type of substituent at the stereogenic center of amines also had a crucial effect as the ethyl group led to poor enantioseparation. Among all analytes studied, trifluoroacetyl-derivatized 1-(2′-fluorophenyl)ethylamine exhibited baseline resolution with the shortest analysis time.

Application of “Smart” Amine Donors for Rapid Screening and Scale-Up of Transaminase-Mediated Biotransformations

Gomm, Andrew,Grigoriou, Stylianos,Peel, Christopher,Ryan, James,Mujtaba, Nafees,Clarke, Thomas,Kulcinskaja, Evelina,O'Reilly, Elaine

supporting information, p. 5282 - 5284 (2018/09/14)

The “smart” amine donors o-xylylenediamine and cadaverine were employed for the rapid screening of a large ketone library and subsequent preparative-scale synthesis of selected compounds using a commercially available amine transaminase, ATA256. The methodology enables both screening and preparative-scale biotransformations to be performed with a single enzyme and simplifies the generation of sp3-rich small-molecule libraries.

N-Alkylation of Aqueous Ammonia with Alcohols Leading to Primary Amines Catalyzed by Water-Soluble N-Heterocyclic Carbene Complexes of Iridium

Fujita, Ken-Ichi,Furukawa, Shohichi,Morishima, Namino,Shimizu, Mineyuki,Yamaguchi, Ryohei

, p. 1993 - 1997 (2018/03/13)

A new catalytic system for the N-monoalkylation of aqueous ammonia with a variety of alcohols was developed. Water-soluble dicationic complexes of iridium bearing N-heterocyclic carbene and diammine ligands exhibited high catalytic activity for this type of reaction on the basis of hydrogen-transfer processes without generating harmful or wasteful byproducts. Various primary amines were efficiently synthesized by using safe, inexpensive, and easily handled aqueous ammonia as a nitrogen source. For example, the reaction of 1-(4-methylphenyl)ethanol with aqueous ammonia in the presence of a water-soluble N-heterocyclic carbene complex of iridium at 150 °C for 40 h gave 1-(4-methylphenyl)ethylamine in 83 % yield.

Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases

Martínez-Montero, Lía,Gotor, Vicente,Gotor-Fernández, Vicente,Lavandera, Iván

supporting information, p. 474 - 480 (2017/06/23)

A one-pot/two-step bienzymatic asymmetric amination of secondary alcohols is disclosed. The approach is based on a sequential strategy involving the use of a laccase/TEMPO catalytic system for the oxidation of alcohols into ketone intermediates, and their following transformation into optically enriched amines by using transaminases. Individual optimizations of the oxidation and biotransamination reactions have been carried out, studying later their applicability in a concurrent process. Therefore, 17 racemic (hetero) aromatic sec-alcohols with different substitutions in the aromatic ring have been converted into enantioenriched amines with good to excellent selectivities (90-99% ee) and conversion values (67-99%). The scalability of the process was also demonstrated when two different amine donors were used in the transamination step, such as isopropylamine and cis-2-buten-1,4-diamine. Satisfyingly, both sacrificial amine donors can shift the equilibrium toward the amine formation, leading to the corresponding isolated enantioenriched amines with good to excellent results.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 40023-74-3