425629-22-7Relevant articles and documents
Substituted 1,3,5-triazine hexacarboxylates as potential linkers for MOFs
Klinkebiel, Arne,Beyer, Ole,Lüning, Ulrich
, (2019)
Hexacarboxylates are promising linkers for MOFs such as NU-109 or NU-110, which possess large values for surfaces and pore volumina. Starting from 2,4,6-tris(bromoaryl)-1,3,5-triazines, palladium-catalyzed cross coupling reactions (Suzuki-Miyaura, Sonogas
Fluorescent Sulphur- and Nitrogen-Containing Porous Polymers with Tuneable Donor–Acceptor Domains for Light-Driven Hydrogen Evolution
Schwarz, Dana,Acharja, Amitava,Ichangi, Arun,Lyu, Pengbo,Opanasenko, Maksym V.,Go?ler, Fabian R.,K?nig, Tobias A. F.,?ejka, Ji?í,Nachtigall, Petr,Thomas, Arne,Bojdys, Michael J.
, p. 11916 - 11921 (2018/08/21)
Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor–acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation. Building on our previous success in incorporating electron-donating, sulphur-containing linkers and electron-withdrawing, triazine (C3N3) units into porous polymers, we report the synthesis of six visible-light-active, triazine-based polymers with a high heteroatom-content of S and N that photocatalytically generate H2 from water: up to 915 μmol h?1 g?1 with Pt co-catalyst, and—as one of the highest to-date reported values ?200 μmol h?1 g?1 without. The highly modular Sonogashira–Hagihara cross-coupling reaction we employ, enables a systematic study of mixed (S, N, C) and (N, C)-only polymer systems. Our results highlight that photocatalytic water-splitting does not only require an ideal optical bandgap of ≈2.2 eV, but that the choice of donor–acceptor motifs profoundly impacts charge-transfer and catalytic activity.
Twinned Growth of Metal-Free, Triazine-Based Photocatalyst Films as Mixed-Dimensional (2D/3D) van der Waals Heterostructures
Schwarz, Dana,Noda, Yu,Klouda, Jan,Schwarzová-Pecková, Karolina,Tarábek, Ján,Rybá?ek, Ji?í,Janou?ek, Ji?í,Simon, Frank,Opanasenko, Maksym V.,?ejka, Ji?í,Acharjya, Amitava,Schmidt, Johannes,Selve, S?ren,Reiter-Scherer, Valentin,Severin, Nikolai,Rabe, Jürgen P.,Ecorchard, Petra,He, Junjie,Polozij, Miroslav,Nachtigall, Petr,Bojdys, Michael J.
, (2017/09/07)
Design and synthesis of ordered, metal-free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed-dimensional (2D/3D) metal-free van der Waals (vdW) heterostructures based on