Welcome to LookChem.com Sign In|Join Free

CAS

  • or

43229-65-8

Post Buying Request

43229-65-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

43229-65-8 Usage

Chemical Properties

Pale yellow liquid

Check Digit Verification of cas no

The CAS Registry Mumber 43229-65-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,3,2,2 and 9 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 43229-65:
(7*4)+(6*3)+(5*2)+(4*2)+(3*9)+(2*6)+(1*5)=108
108 % 10 = 8
So 43229-65-8 is a valid CAS Registry Number.

43229-65-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Benzyl-1-(4-methoxyphenyl)propan-2-amine

1.2 Other means of identification

Product number -
Other names N-benzyl-1-(4-methoxyphenyl)propan-2-amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:43229-65-8 SDS

43229-65-8Relevant articles and documents

Electrochemical Aziridination of Internal Alkenes with Primary Amines

Bartolomeu, Aloisio de A.,Dyga, Marco,Goo?en, Lukas J.,Laudadio, Gabriele,No?l, Timothy,O?eka, Maksim,de Bruin, Bas,de Oliveira, Kleber T.,van Leest, Nicolaas P.

, p. 255 - 266 (2021/01/19)

An electrochemical approach to prepare aziridines via an oxidative coupling between alkenes and primary alkyl amines was realized. The reaction is carried out in an electrochemical flow reactor, leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine yielding the corresponding hydroaminated product.Aziridines are useful synthetic building blocks, widely employed for the preparation of various nitrogen-containing derivatives. As the current methods require the use of prefunctionalized amines, the development of a synthetic strategy toward aziridines that can establish the union of alkenes and amines would be of great synthetic value. Herein, we report an electrochemical approach, which realizes this concept via an oxidative coupling between alkenes and primary alkylamines. The reaction is carried out in an electrochemical flow reactor leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine, yielding the corresponding hydroaminated product. Mechanistic investigations and DFT calculations revealed that the alkene is first anodically oxidized and subsequently reacted with the amine coupling partner.The central tenet in modern synthetic methodology is to develop new methods only using widely available organic building blocks. As a direct consequence, new activation strategies are required to cajole the coupling partners to react and, subsequently, forge new and useful chemical bonds. Using electrochemical activation, our methodology enables for the first time the direct coupling between olefins and amines to yield aziridines. Aziridines display interesting pharmacological activity and serve as valuable synthetic intermediates to prepare diverse nitrogen-containing derivatives. Interestingly, the sole byproduct generated in this process is hydrogen, which can be subsequently used to reduce the aziridine into the corresponding hydroaminated product. Hence, this electrochemical methodology can be regarded as green and sustainable from the vantage point of upgrading simple and widely available commodity chemicals.

Use of fenoterol and fenoterol analogues in the treatment of glioblastomas and astrocytomas

-

Page/Page column 37; 55, (2016/12/07)

This disclosure concerns the discovery of the use of fenoterol and (R,R)- and (R,S)-fenoterol analogs for the treatment of a tumor expressing a β2-adrenergic receptor, such as a primary brain tumor, including a glioblastoma or astrocytoma expressing a β2-adrenergic receptor. In one example, the method includes administering to a subject a therapeutically effective amount of fenoterol, a specific fenoterol analog or a combination thereof to reduce one or more symptoms associated with the tumor, thereby treating the tumor in the subject.

PROCESSES FOR PREPARING SUBSTANTIALLY PURE ARFORMOTEROL AND ITS INTERMEDIATES

-

Page/Page column 14, (2012/01/13)

Provided herein are improved, convenient and industrially advantageous processes for the preparation of N-[2-hydroxy-5-[(1R)-1-hydroxy-2-[[(1R)-2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl]formamide (Arformoterol) or a pharmaceutically acceptable salt thereof, in high yield and purity. Provided further herein is an improved and industrially advantageous process for the preparation of a substantially enantiomerically pure arformoterol intermediate, (R)-4-methoxy-α-methyl-N-(phenylmethyl)benzeneethanamine.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 43229-65-8